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Abstract  

This study studies the complex relationships between maize growth, soil organic matter, and soil 

physical-chemical properties, with an emphasis on biochar. It examines how soil organic matter 

affects pH, bulk density, Cation Exchange Capacity (CEC), porosity, and nutrient levels. Biochar 

and soil organic matter increase soil pH by decomposing organic anions. With biochar, increasing 

soil organic matter concentration reduces bulk density, improving soil structure, porosity, and water 

retention. By increasing Cation Exchange Capacity (CEC), biochar and soil organic matter improve 

soil nutrient retention and delivery, which is essential for soil fertility. As a soil organic matter 

component, biochar provides macro and micronutrients, boosting soil production. The study also 

highlights the importance of soil porosity in plant growth, with sandy soils having high porosity 

and leaching susceptibility and soil organic matter. However, loam soils, made of sand, clay, and 

silt, have a balanced porosity and soil organic matter concentration that makes them ideal for 

agriculture. These data show how organic matter, and biochar, affect maize growth and soil 

physico-chemical properties. This finding has major implications for protecting the environment 

and sustainable agriculture. 
© 2024 UMK Publisher. All rights reserved. 

 

1. INTRODUCTION 

Zea mays, or maize, stands as a vital agricultural 

commodity not only in Malaysia but also on a worldwide 

scale, ranking closely alongside paddy and wheat crops 

(Jalal et al., 2020). The value of it goes beyond food for 

humans, as it is necessary for Malaysian livestock feed 

(Nor et al., 2019). However, to accommodate the 

population's demand, the increasing demand for maize has 

necessitated the implementation of multiple cropping 

strategies and the extensive application of chemical 

fertilizers (Habibi et al., 2019; Zhou et al., 2014). 

Unfortunately, poor oversight has led to a significant 

deterioration of the physico-chemical characteristics of the 

soil and maize growth and production (Vilakazi et al., 

2022; Melkamu et al., 2019). Furthermore, excessive 

fertilizer application resulted in soil acidity, which is now 

a major problem affecting maize yield (Bai et al., 2020). 

The loss of soil organic matter has resulted in a severe 

degradation of the physico-chemical properties of the soil, 

which has led to a decline in soil fertility and maize growth 

performance (Turner et al., 2016; Campitelli et al., 2008). 

To mitigate this scenario, organic addition such as 

biochar is advocated as a potential method of improving 

soil physico-chemical characteristics and maize 

productivity (Sisouvanh et al., 2021; Yu et al., 2022). 

According to Maharjan et al. (2021), the use of biochar 

improves soil physico-chemical characteristics and 

nutrient availability in maize production. Organic matter in 

the soil has also been shown to help preserve soil fertility 

(Medina-Méndez et al., 2019).  

 Soil organic matter is described as organic matter 

in the soil obtained from plant and animal leftovers in 

various phases of decomposition, and it plays an important 

role in maximizing yield production (Adugna, 2016). 

Organic matter, together with the cooperation of biochar 

has been found to be strongly related to the biological, 

chemical, and physical aspects of soil (Angelopoulou et al., 

2021). Addressing these variables, the goal of this research 

is to analyze and support sustainable agricultural methods 

in maize production, with a particular emphasis on 

alleviating soil degradation issues and maximizing maize 

productivity through the incorporation of biochar. 

 

2. RESULT AND DISCUSSION 

2.1. Soil pH balancing by biochar  

 Soil pH is described as the measurement of soil 

alkalinity and acidity (Seifu et al., 2014). It is one of the 

soils physico-chemical characteristics that are essential for 

plant as well as soil health (Liu et al., 2020). Extremely low 

soil pH, which indicates acidity, may inhibit nutrient 
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mobility and absorption by soil and plants, as well as 

microbial activity and plant growth (Machodo et al., 2021; 

Maharajan et al., 2021). Acidic soil is associated with a 

high concentration of aluminum (Al), which significantly 

limits plant growth (Su et al., 2022; Zhang et al., 2022; 

Jiang et al., 2021).  

 

 
Figure 1: Figure shows the increase rate of biochar application 

significantly increase soil pH reading to optimum range (Pandit 

et al., 2018) 

 

 Aluminum toxicity is significantly related to soil 

acidification, which causes a global decline in maize 

production (Kong et al., 2021; Fu et al., 2020).  

 However, studies have shown that biochar can 

decrease soil aluminum content and significantly increase 

soil pH to the optimal range, with the rate of increase 

depending on the amount of biochar applied (Rogovska et 

al., 2014). Studies on the impacts of varying biochar 

application rates on maize production have revealed that 

when the biochar application rate increases, soil pH values 

rise and change from acidic to neutral (Pandi et al., 2018) 

(Fig. 1). A significant impact is shown by these findings (P 

< 0.001). According to Pandit et al. (2018), biochar helps 

the soil's organic matter and nitrogen mineralize, which in 

turn balances the pH of the soil (Calamai et al., 2020). 

Biochar can be used to neutralize the pH of maize crop soil, 

resulting in increased maize production (Masud et al., 

2020). According to research, the addition of biochar to 

crop production soil pH can be raised to the optimal range 

of 5.0 to 7.0, a conducive range for healthy maize growth 

(Musharrof et al., 2021; Pen et al., 2018). According to 

science, biochar improves soil by correcting the pH to its 

suitable range (Singh et al., 2022; Chen et al., 2020; Zhang 

et al., 2019). This amendment repairs acidic soil by 

displacing aluminum and cations such as potassium, 

sodium, magnesium, and calcium from soil exchange sites, 

elevating soil pH and base saturation (Zuo et al., 2023). 

According to research, altering soil pH with biochar 

resulted in significant improvements in other soil physico-

chemical parameters (Singh et al., 2022; Yunfeng et al., 

2013). 

 Accordingly, plant materials addition to soil, such 

as wheat straw, legume residues, and wheat straw, can 

reduce acidity and improve pH levels (Sulaiman et al., 

2023). Welen et al. (2019) found that lucerne chaff 

significantly improved in pH, ranging from pH 4.3 to pH 

5.7. Furthermore, Yunfeng et al. (2013) found that the 

addition of plant residues affects soil-surface interactions, 

specifically, ligand exchange involving iron hydroxyl and 

aluminium hydroxyl oxides. Chickpeas, canola, and wheat 

are examples of organic matter that raises pH levels when 

applied; chickpeas have the greatest pH values (Gao et al., 

2021). Furthermore, the addition of crop residues causes 

aluminium and other cations, such as potassium (K), 

sodium (Na), magnesium (Mg), and calcium (Ca), to be 

displaced from their exchange sites. This raises the pH of 

the soil and its base saturation (Khan et al., 2021). It is 

noteworthy that plant materials' characteristics can also 

impact pH alterations (Yunfeng et al., 2013). 

 

2.2. Bulk density reduction by biochar  

 Bulk density can be defined as a soil compaction 

indicator (Dörner, 2002). Soil bulk density is determined 

by dividing the weight of dry soil by its total volume, which 

includes both soil particles and pores (Correa et al., 2019; 

Chaudhari et al., 2021).  

 Biochar's high porosity has been successfully 

demonstrated as a soil conditioning agent, proportionally 

reducing soil bulk density (Bell et al., 2022; Chen et al., 

2020; Yu et al., 2019; Rogovska et al., 2014). Higher 

biochar application rates (100 𝑀𝑔 ℎ𝑎−1) result in high 

reduction of soil bulk density (1.48  𝑔 𝑐𝑚−3) (Fig. 2). in 

maize productivity, which is consistent with previous 

research (Rogovska et al., 2014). Findings supported by 

Yue et al., (2023) proved that soil bulk density able to 

reduce with biochar application by approximately 1.34 to 

22.82%. Therefore, a number of successful 

research studies have proven that biochar significantly 

affects soil bulk density and maize development. 

(Mayhew, 2021; Sakin et al., 2011). The significant 

amount of carbon of biochar encourages the formation of 

stable soil organic matter, improving soil structure and 

nutrient retention (Mustapha et al., 2022). Biochar 

incorporation has been proven to improve soil physico-

chemical parameters, including an approximate decrease in 

bulk density of approximately 1-23% and an increase in the 

percentage of large pores of approximately 0.7-12% (Ma, 

2020).  Yue (2023) conveyed similar data, demonstrating a 

significant decline in soil bulk density following biochar 

application, with reductions ranging from 1.34% to 

22.82% over a three-year research period. 

 Organic matter on the other hand plays a pivotal 

role in soil physical properties, and has a strong 

relationship with bulk density (Blanco and Jasa, 2019). A 

higher organic matter content is known to reduce soil bulk 

density increasing soil volume relative to its bulk density 

(Gui et al., 2021). This is facilitated by organic matter’s 

ability to enhance soil water-holding capacity (Bhadha et 
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al., 2017). Research has strongly demonstrated a 

substantial relationship between organic matter and bulk 

density (Sakin et al., 2011). Furthermore, research has 

observed that the quantity of organic matter significantly 

influences soil bulk density across various soil horizons in 

podzolic soils (Nelson et al., 2021). Other research proved 

that with an addition of 1% organic matter can decrease 

bulk density by 0.007 g/cm3 (Piaszczyk et al., 2019). 

Mouazen et al., (2002) demonstrated that organic matter 

inside the soil can be enhanced by the process of 

decomposition of dead animals and plant residues, coupled 

with the activity of organisms such as earthworms, which 

enriches the topsoil with organic matter (Marzi et al., 

2019). Research significantly indicates that the presence of 

organic matter enhances soil pore spaces, enhancing soil 

porosity, and mitigating soil compaction and bulk density 

(Canrodi et al., 2020) 

 

 

Figure 2: The reading of soil bulk density is decreasing as the 

biochar application is increasing (Rogovska et al., 2014) 

 

2.3. Cation Exchange Capacity (CEC) 

 optimization by biochar 

 Cation Exchange Capacity (CEC) is a term used 

to indicate the amount of negative ions inside the soil to 

facilitate the absorption of cations such as magnesium, 

potassium, and calcium by plants (Hutasuhut et al., 2023; 

Tripathi et al., 2021; Nakhli et al., 2017). A study 

conducted by Yue et al., (2023) proven that the cooperation 

of different rates of biochar (0, 30, 75, and 175 𝑡 ℎ𝑚 −2) 

for subsequently three years showed an increase in Cation 

Exchange Capacity (CEC) compared to control treatment 

at 0 𝑡 ℎ𝑚 −2 application (B0) (Table 1).   

 

Table 1: Cation Exchange Capacity (CEC) in sulfate saline soils 

amended with biochar at various rates from 2014 to 2016 (Yue 

et al., 2023) 

Treatments 
CEC 𝑐𝑚𝑜𝑙 𝑘𝑔−1 

2014 2015 2016 

B0  7.76b 7.42b 9.67a 

B30  8.37ab 7.87b 10.65a 

B75 8.69ab 8.91ab 11.14a 

B175 10.13a 10.13a 11.90a 

  

 Findings indicate that the application of biochar 

to maize soils is able to increase the Cation Exchange 

Capacity (CEC) and positively affect the availability of soil 

nutrients to maize plants (Glaser et al., 2019; Pandit et al., 

2021). In simple words, the higher the CEC, the more 

fertile the soil. This is explained by Siltecho et al., (2021) 

that the oxidation process of biochar is able to promote 

high Cation Exchange Capacity (CEC) that allows 

numerous nutrient and soil organic compound absorption. 

The finding has proven that the application of biochar is a 

significant method in solving soil and maize nutrient 

depletion (Nakhli et al., 2017). High Cation Exchange 

Capacity (CEC)  in soil is able to stimulate both soil and 

maize fertility and leads to optimum maize production 

(Yue et al., 2023; Kebede et al., 2019). Cation Exchange 

Capacity (CEC), commonly known as CEC, is a term used 

to define the number of negative ions in soil that facilitate 

plants' absorption cations including magnesium, 

potassium, and calcium (Hutasuhut et al., 2023; Tripathi et 

al., 2021). Yue et al. (2023) discovered that applying 

varying rates of biochar (0, 30, 75, and 175  𝑡 ℎ𝑚−2) over 

three years resulted in an increase in CEC as compared to 

the control treatment at 0  𝑡 ℎ𝑚−2 application (B0). 

 Studies highlight the strong relationship between 

soil organic matter content and the enhancement of soil 

(Mouzakis et al., 2019). According to another research, soil 

organic matter contributes significantly to the topsoil's 

Cation Exchange Capacity (CEC), with an average depth 

of less than 30 cm, accounting for up to 35–50% of the total 

(Solly et al., 2020). Additionally, studies show that the 

addition of organic matter increases its potential for 

exchange since these organic components contain humic 

materials (SM et al., 2016). Particularly at a pH of 7, 

carboxyl group dissociation is the cause of this increase in 

Cation Exchange Capacity (CEC) in the presence of 

organic matter (Tomczyk et al., 2020). Organic matter's 

many functional groups—such as alkyl, carboxyl, and 

hydroxyl groups—which carry charges are responsible for 

its significant contribution to Cation Exchange Capacity 

(CEC) (Wang et al., 2020). On the other hand, Cation 

Exchange Capacity (CEC) measurements in tropical soils 

show that oxidized minerals such as iron, manganese, and 

aluminium are commonly abundant (Lorandi and 

Reinaldo, 2012). 

 

2.4. Soil Nutrient Content Level with Biochar 

 Application 

 The presence of soil nutrients is strongly related 

to the amount of nutrients contained within the soil and is 
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characterized by its association with soil fertility (Begriche 

et al., 2013). Nutrients in the soil are essential for maize 

growth and development, which eventually results in the 

highest crop production. Moreover, several factors, 

including soil acidity, texture, structure, mineral 

composition, and soil moisture, can have an influence on 

soil nutrient levels (Lemus et al., 2021). Biochar has been 

shown to have a significant impact on soil fertility (Eilin, 

2012; Grant, 2017; Banwart, 2015; Douglas, 2016; 

Lehmann, 2015). According to Hossain et al. (2020), the 

utilization of biochar results in the retention of 

approximately 65-95% of nitrogen and sulfur, as well as 

20-75% of phosphorus, within the soil. Research by 

Khadim et al. (2022) (Fig. 3) indicates that introducing 

biochar to the soil boosts soil nitrogen levels and 

maximizes maize yield. According to similar research, soil 

nitrogen, phosphorus, and potassium levels increase as 

biochar application increases (Pandit et al., 2018). 

 

 

Fig 3. Figure indicates the application of biochar (bc) 

stimulate maize production and enhance soil nutrient 

concentration (Khadam et al., 2022) 

 

 Researchers have also indicated great deal on soil 

fertility, which is certainly the most important factor 

impacted by organic matter (Eilin, 2012; Grant, 2017; 

Banwart, 2015; Douglas, 2016; Lehmann, 2015). Because 

it acts as a long-term retention of nutrients and a source of 

plant nutrients through active decomposition, organic 

matter is essential to preserving this fertility (Diacono, 

2011). Organic matter plays a more significant function in 

soils that do not receive external fertilization because it 

contains a multitude of macro- and micronutrients that are 

vital for plant growth (Pető et al., 2020). Furthermore, it 

has been demonstrated that adding organic matter to soil 

increases its availability of phosphorus (Xiao et al., 2021), 

but removing organic matter from the soil is associated 

with a corresponding reduction in its sulphur content 

(Khadka et al., 2016). The benefits of organic matter also 

extend to the preservation and availability of iron.   

  

 Research has shown that plants with higher levels 

of organic matter have a lower propensity to chlorosis and 

a more readily available type of iron (Thorp et al., 2021). 

In addition, a healthy microbial population is fostered by 

the presence of organic matter, which is essential for 

transforming iron into a form that is more plant-friendly 

(Uhlig and Blankenburg, 2019). Furthermore, organic 

matter is crucial for providing bound micronutrients 

including zinc, iron, manganese, and copper that can be 

chelated to increase plant availability (Fageria, 2012). 

Moreover, the importance of organic matter in soil is 

further demonstrated by its relationships with a wide range 

of living things, such as nematodes, fungi, bacteria, and 

earthworms. These organisms actively participate in the 

processes that break down organic matter and convert it 

into nutrients, which affects the amount of nutrients in the 

soil. They work as a biological nutrient cycle to produce a 

complex soil food web (Murphy et al., 2015). Finally, the 

relationship that exists between the amount of hot water-

soluble boron in soil and organic matter highlights the 

function of organic matter as the main source of easily 

available boron storage, which is essential for plant 

nutrition (Khurana et al., 2022). 

 

2.4. Enhancing soil porosity and Alleviating Water 

 Stress through biochar Cooperation 

Soil porosity is the percentage of pores in the total 

volume of the soil that is positioned between soil organic 

matter and mineral particles that can store either water or 

air (Rima et al., 2023; Sun et al., 2023). Due to its dual role 

as a fertility indicator and regulator of numerous soil 

activities, soil porosity is important for maize growth and 

development (Ramesh et al., 2019; Luong et al., 2015). It 

has been demonstrated that low soil porosity beyond 0.10 

m³ m⁻³ adversely impacts both maize growth and 

production (Gleiciane et al., 2020). 

Nonetheless, a number of studies have 

demonstrated that the application of biochar is a mitigating 

technique to improve the condition of the soil and increase 

maize production (Rogovska et al., 2011; Bell et al., 201; 

Salem et al., 2015). Analogous research suggests that 

utilizing biochar can mitigate many physico-chemical 

constraints, such as water stress (Pandit et al., 2018). 

Supporting research has proven that the volumetric water 

content of the soil may elevate by up to 22.82% as the 

dosage of incorporated biochar induced into the soil is 

increased (Yue et al., 2023) (Fig 4). Based on the result 

obtained in (Fig 4), it shows that the volumetric water 

content of B150 reached a maximum of 0.55 cm3 cm−3 at 

a matric potential of 6 kPa. This represents an increase of 

11.99% and 7.72%, respectively when compared to B0. 

This result is consistent with the observation that 

implementing biochar in the soil increases its volumetric 

soil content by 0.74–11.99% when compared to soil that 

does not have biochar treatment (Yue et al., 2023; Liang et 

al., 2020).  
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Fig 4.  Water retention curve under the low suctions in the 

soils amended with various biochar range of application. 

B0= Control (No biochar cooperation), B30=  30 𝑡 ℎ𝑚−2, 

B75= 75  𝑡 ℎ𝑚−2, and B150=150  𝑡 ℎ𝑚−2. (Yue et al., 

2023).  

 

 Soil organic matter on the other hand is essential 

for improving soil porosity and structure, which in turn 

improves the overall quality of the soil (Readyhough et al., 

2021). However, studies have shown that a higher 

aggregate density and a more constrained range in the 

aggregate size distribution are frequently brought about by 

an increase in the soil organic matter content of soils 

(Rondon et al., 2021). Soil organic matter has a substantial 

correlation with the percentage of soil porosity and is 

intimately related to soil permeability (Marín and Rivera, 

2022).  

  Sandy soils, known for their large porosity, 

which ranges from 33% (at a density of 1.78 g/cm³) to 47% 

(with a density of 1.40 g/cm³), are prone to increased 

nitrogen leaching from the soil (Nisa et al., 2023; Campos 

et al., 2019). As a result, reduced soil organic matter 

concentration and thus poorer soil quality are associated 

with sandy soils (Minhal et al., 2020). On the other hand, 

loam soil is thought to be high-quality soil that supports 

healthy plant growth because of its 40–60% soil organic 

matter content, 1.33 g/cm³ density, 50% pore spaces, and 

sufficient water retention (Zaffar and Sheng, 2015; Eluozo, 

2013). 

 

 

 

CONCLUSION 

 To sum up, this study highlights how important it 

is to use sustainable farming methods, particularly adding 

organic amendments like biochar and soil organic matter, 

to improve soil quality and maximize maize yield. Because 

of its significant effect on soil pH management, biochar 

and soil organic matter play vital parts in reducing soil 

acidification, which is a significant threat to maize 

productivity. Both biochar and soil organic matter improve 

a variety of soil physico-chemical characteristics, 

including pH, and replaces toxic components such as 

aluminum to create a healthy soil environment that is 

favorable to maize growth. Additionally, 

the implementation of biochar improves soil structure and 

nutrient retention by decreasing bulk density and 

increasing porosity. This helps maize plants expand their 

roots and become more nutrient-available. The study also 

shows that biochar increases the soil's Cation Exchange 

Capacity (CEC), which increases maize's accessibility to 

vital nutrients and eventually improves soil 
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