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ARTICLE INFO  ABSTRACT 

  Oil palm tree plantations are a crucial source of vegetable oil for various industries, 
playing a significant role in the global economy. One key aspect of plantation 
management is accurate inventory management of oil palm trees, which involves 
the detection and counting of individual trees. Traditional inventory management 
methods for oil palm trees rely on ground-based manual measurements, which are 
time-consuming, labor-intensive, and prone to errors. However, accurate and 
efficient detection and counting of oil palm trees from drone images remain 
challenging due to the complex and variable nature of the plantation environment. 
Drone-based remote sensing has emerged as a promising alternative for inventory 
management in recent years. In this study, a novel approach to enhance the 
accuracy and efficiency of oil palm tree detection and counting using advanced 
drone-based image recognition techniques is proposed. The research discusses a 
novel image recognition technique that uses a custom GLCM, Haar Wavelet, and 
template matching to detect and count oil palm trees from drone images. The 
proposed approach outperformed traditional machine learning techniques and 
achieved a high accuracy of 83.75% and 86.9% in detecting individual oil palm 
trees in Jeli and Keratong, respectively. Haar Wavelet proves this algorithm 
achieves the highest overall accuracy. Additionally, eight statistical parameters can 
manipulate the GLCM, while offset parameters can boost accuracy for various 
applications or methods. The study highlights the potential of advanced drone-
based image recognition techniques for optimizing plantation management and 
contributing to sustainable production practices. 
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1. Introduction 

Malaysia is one of the top exporters of oil palm, accounting for 28.6% of the global market share in 2018, 
second only to Indonesia. The Malaysian Palm Oil Council (MPOC) [1] reports that Malaysia is one of the largest 
producers and exporters of palm oil in the world, accounting for 11% of the world’s oils and fats production and 27% 
of export trade of oils and fats. The industry provides employment to more than half a million people and livelihood to 
an estimated one million people. 
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Tree plantation identification is crucial for plantation management, environmental management, biodiversity 
monitoring, and many other applications [2]. Accurate inventories and monitoring of oil palm estates can be challenging 
and critical for plantation management and plant area expansion. Manual field-based tree counting is time-consuming 
and high-cost, making it almost impossible to manage oil palm estates manually. Developing an easier, simpler, and 
cheaper method for tree counting is needed. Conventional methods for tree counting can be carried out by manually 
marking images or carrying out field surveying using GPS to collect the positions of oil palm trees and display their 
position on the image [3]. 

There is no doubt that, with the development of image recognition, human life has been eased, especially in 
monitoring and observation activities in crop management. Aiming to provide a solution for the problem in oil palm 
monitoring, unmanned aerial vehicles (UAV) are effectively being used for plantation monitoring and will be paired 
with developed sensors and computing-based methods to perform automated image analysis. The result would provide 
labor support, and the production can be increased with high accuracy of monitoring activities.  

Drones have also been used to count oil palm trees. Kattenborn et. al [4] used photogrammetric point clouds 
from UAV-based for automatic single palm tree detection in plantations. Among the software used are VisualSFM and 
3DF Lapyx to calculate internal camera parameters. Plus, airborne hyperspectral imagery was used in the tree counting 
study. Shafri et al. [5] proposed a method for detecting oil palm trees by using airborne hyperspectral imagery, which 
provides rich information to remove non-oil palm features from the image. This study reported that using high spatial 
resolution remote sensing imagery allows them to handle the oil palm tree detection problem and proposed a new 
algorithm. Szantoi et al. [6] used Sobel edge detection and several color band combinations to detect trees from very 
high spatial resolution (0.3m) aerial imagery. Katoh and Gougeon [7] improve the precision of tree counting by 
combining tree detection with crown delineation and classification on homogeneity by using multispectral airborne 
digital data.   

Studies on determining and counting trees or objects have been conducted by several researchers, including 
Bazi et al. [8], Gong et al. [9], Christophe and Inglada [10], and Vibha et al. [11] using different kinds of images. An 
increasing number of oil palm research-related studies show this field has captured the interest and awareness of 
researchers worldwide. However, a study on identifying the oil palm tree based on drone images using deep learning is 
still very limited. Only Li et al. [12] and Mubin et al. [13] have conducted studies using deep learning methods using 
QuickBird images and WorldView-3 images, respectively. Both studies show high accuracy achievement in identifying 
the oil palm trees using deep learning methods. Thus, this research would be the first to implement and improve the 
technique of deep learning image recognition for oil palm plantations using drone-based remote sensing images. In this 
research, an improvement in the technique for data acquisition and image processing was developed utilizing 
multispectral imaging based on drone and deep learning convolutional neural networks to evaluate the phenotypic 
characteristics of oil palm crops. 

The study aims to develop an automated image recognition technique for oil palm tree area recognition based 
on the highest accuracy obtained in oil palm tree recognition. By using drone-based remote sensing images, enhanced 
tree recognition techniques were established. The oil palm tree recognition techniques produced were also used to count 
the number of oil palm trees in oil palm plantations in Jeli, Kelantan, and Keratong, Pahang. 

1.1 Oil Palm Industry 

The oil palm, also known scientifically as Elaeis guineensis, is a native of West Africa, where evidence of its 
use as a basic food yield dates as far back as 5,000 years. Oil palm is a monoecious crop. It consisted of both male and 
female flowers on the same tree. Each tree produces a close-packed cluster of about 1000 to 3000 fruit per cluster. The 
shape of the fruits is spherical or elongated. The fruit is blackish purple, and when it rips, it turns to reddish-orange.  

It was first brought into Malaysia by the British in the early 1870s as a decorative plant. In 1917, Tennamaran 
Estate in Selangor was the first estate to be established as the first commercial planting, which was the pioneer for the 
huge oil palm plantations and the palm oil industry in Malaysia. The production of oil palm skyrocketed in the early 
1960s under the government’s agricultural diversification program, which was initiated to find another economic source 
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in order to overcome the economic dependence on rubber and tin. In Malaysia, oil palm plantation is mainly supported 
by the estate management system and smallholder schemes. 

Palm oil is being used globally. Although some countries use unrefined palm oil, refined oils are used every day 
in Malaysia. Palm oil is plentiful, healthful, relatively cheap, and suitable for most food products. Hence, it is a high-
demand industry across the globe. Other than that, oil palm tree is used to create a diversity of products such as plywood, 
furniture, and many more. Palm oil is also used in making soaps, cosmetics, candles, biofuels, and lubricating greases. 
The oils are also used to process tinplate and cover iron plates. 

1.2 Effect of the Oil Palm Industry on the Economy 

Oil palm trees start producing fruits after 30 months of planting on the field and will keep producing for 20 to 
30 years. Hence, palm oil is consistent in providing oil to the demand. Now, in Malaysia, 5.8 million hectares of land 
are assigned for oil palm production, which can produce approximately 19.5 million tonnes in 2018, generating export 
earnings of RM 67.5 billion [14]. In 2017, the largest contributor to Malaysia’s gross domestic product (GDP) in the 
agricultural field was palm oil, with a gross of RM 44.8 billion or 3.8% of the GDP contribution. Malaysia is one of the 
top producers and exporters across the globe, contributing to 11% of the cultivation of oil and fat around the world and 
27% of the export trade of oils and fats [1]. 

Malaysia is focusing on 12 national key economic areas (NKEA) to assist its economy, and it is also aiming to reach a 
high-income status by 2020. Under NKEA, the palm oil industry is targeting to contribute RM 178 billion to Gross 
National Income (GNI) [15]. The palm oil industry in Malaysia plays a vital role in reducing poverty and in the 
movement of workers from village to city. The industry has created job opportunities, built infrastructure, and 
contributed to stability in the communities. 

1.3 Remote Sensing 

Remote sensing is a process of acquiring information about the Earth's surface without actually being in contact 
with it. This is done by sensing and recording reflected or emitted energy and processing, analyzing, and applying that 
information [16]. Remote sensing techniques for forest cover change detection and monitoring have been used to assess 
the differences in forest cover over two or more time periods caused by environmental conditions and human actions. 
Remote sensing and Geographical Information Systems (GIS) are practical tools for estimating and confirming 
ecosystem changes arising from forest use and forest management interference. 

Remote sensing data provides a means of quickly identifying and delineating various forest types, which will 
be difficult and time-consuming if traditional ground surveys are used. Data is available at various scales and resolutions 
to satisfy local or regional demands. Species identification can be performed with the interpretation of multi-spectral, 
hyper-spectral, or air photo data. Both imagery and the extracted information can be incorporated into a GIS to analyze 
further slopes, ownership boundaries, or roads [16]. Remote sensing satellite is a widely used technique to study 
vegetation cover. Normally, data about Earth’s features is acquired either from air, which is aerial photography, or from 
space, which is satellite imagery. Aerial photographs are in analog form, while images are basically in digital form. 

Remote sensing is based on the measurement of electromagnetic energy. The remote sensing sensor measures 
the energy that is reflected or backscattered by the earth’s surface. The measured energy is converted and stored as a 
digital number (DN) value, which ranges from 0 to 255. Each pixel has a single DN value. Most sensors measure 
reflected sunlight, which is passive remote sensing. However, some sensors detect energy emitted by the earth itself or 
provide their own source of energy, which is active remote sensing [17]. 

1.3.1 Satellite 

A satellite is an object in space that orbits around a larger object. Satellites are categorized into two, which are 
natural and artificial. Natural satellites, such as the moon, circle the Earth, while artificial satellites, such as the 
International Space Station (ISS), circle the Earth. The first artificial satellite in the world was launched by Russia in 
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1957. Sputnik 1, launched by Russia, has been an initiator in the space race as a lot of countries built their own satellite. 
Now, a huge number of satellites and space stations have been launched and assembled in orbit. 

1.3.2 Unmanned Aerial Vehicle  

Unmanned aerial vehicles (UAVs) can make a practical map. Light, handy drones are rapidly being deployed. 
They convey lightweight digital cameras that can take great-quality pictures. These cameras can be set to capture images 
at basic intervals, and digital memory is economical and unlimited [18]. After securing the pictures, the pictures can be 
stitched into geo-corrected orthomosaics. They can be geometrically corrected to a uniform scale, adapted so that they 
comply with a typical geographical coordinate system, and stitched together. 

There are different types of maps that are produced by UAVs, which are geographically ortho-rectified 2D 
maps, elevation models, thermal maps, and 3D maps or models [19]. The 2D map is the most familiar product made 
from imagery gathered from UAVs. The easiest approach to make a mosaic from aerial imagery is by utilizing 
photograph stitching software such as Agisoft software. It blends a series of overlapping aerial images into a specific 
photo. But, without a geometric adjustment, it is hard to measure distance accurately. Geometric adjustment is a 
procedure that separates the angle misinterpretation from the aerial photograph. Images that have been knitted are 
continuous along the boundaries. However, it does not have perspective distortion corrected. It is challenging to 
determine the geographical references accurately in the absence of a ground control point and over-viewed location, 
which is recognizable in the image. 

1.4 Tree Detection and Counting 

1.4.1 Texture 

Texture is a feature used to construct and sort images into points of interest. It provides information about the 
image regarding color or intensity spatial structure. In image recognition, texture classification is one of the difficulties, 
and the problem lies in distinguishing between the textures [20]. Texture analysis had two primary issues: texture 
segmentation and texture classification. Texture is one of the crucial techniques used in image processing for the 
assessment of texture. Its main features are separation, discrimination, identification, classification, segmentation, and 
supervised classification. 

1.4.2 Gray Level Co-Occurrence Matrix 

Gray Level Co-occurrence Matrix, also known as GLCM, is one of the texture analysis methods where it studies 
the relationship between 2 pixels. Texture characteristics are determined in statistical texture analysis from the statistical 
distribution of observed combinations of intensities at defined positions relative to each other in the image [21]. The 
probability of GLCM can be defined as the number of times this result appears, divided by the total of potential 
outcomes. This is only an estimation since a definite likelihood would involve cumulative values, so it can also be a 
specific frequency value that can only be integer values. So this technique is called matrix normalization [22]. 
Standardization requires dividing values by a number. It varies from the likelihood scientifically. It can be expressed 
scientifically by Normalization equation: 
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i is the row number and j is the column number. 
V is the value in the cell i, j of the image window. 
Pij is the probability value recorded for the cell. 
N is the number of rows or columns. 
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1.4.3 Haar Wavelet 

Haar Wavelet is a sequence of functions and is also known as the simplest wavelet ever. It is often used in image 
processing, where excess data requires a huge storage space. Haar Wavelet is an orthonormal interval system [0,1]. It is 
a series consisting of supported functions for small sub-intervals of length [0,1]. 

Since Haar Wavelet is a simple wavelet, the functional limitation is not continuous, so it cannot be distinguished. 
However, Haar Wavelet can also benefit the study of spontaneous transition. In order to compress one- and two-
dimensional signals, Haar Wavelet is used. Haar Wavelet can be described as below: 
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 1.4.4 Template Matching 

In image processing, template matching is a significant subject in the field as it is one of the methods for the 
key issue, which is determining the area of interest. The subject identifies whether the object of interest is in the image 
analyzed. Template Matching is widely used in many fields, including image recognition, mapping and monitoring, 
image stitching, and medical imaging. Template Matching is made of two primary elements, which are the source image 
and the testing set or patch [23].  

It is classified into two categories: template-based and feature-based. Since they run directly on image pixels, 
the template-based method can be efficient for structures with few features or where the majority of the template image 
acts as the corresponding image. The intensity values of both the image and the template are used to determine similarity. 
Next, when there is more similarity between the source and template images in terms of features and control points, the 
feature-based method is used. Neural Networks and Deep Learning classifiers such as ResNet are used in this method 
by processing them through multiple hidden layers, each creating a variable with image classification data [24]. 

1.4.5 Support Vector Machine (SVM) 

The support vector machine (SVM) is a neural network-based model that includes classification methods for 
problems with the classification of two classes. Because of the linear distinction concept, there are several potential 
hyperplanes that could be selected to distinguish the two types of data points. Hyperplanes are decision borders that 
clearly distinguish data points. Data points falling on either side of the hyperplane can be assigned to various groups. 
The distance from any set between both the hyperplane and the closest data point is defined as the margin. Hence, SVM 
is often referred to as the maximum margin classifier. The purpose is to identify a hyperplane with the maximum possible 
margin between the hyperplane and some point within the training set, which is highly important as it will increase the 
accuracy of the classification of new data. 

Other than linear classification, SVM can effectively perform non-linear classifications by using the kernel trick, 
which indirectly maps their inputs into high-dimensional feature spaces. There are various types of kernels. However, 
the most used is the polynomial kernel and the radial basis function (RBF). The polynomial kernel focuses not only on 
the given characteristics of the input samples to determine their likeness but also on the combinations of the input 
samples. RBF kernels are similar to Gaussian distribution, where it measures the relation and distance between two 
points.  

SVM can be beneficial to use in image recognition as it is efficient in high-dimensional structures and even in 
circumstances where the dimension number is larger than the sample size. SVM is also storage effective as it uses a 
subset of the training set in the support vector. For the decision function, various kernel functions may be defined. 
Hence, SVM is versatile as it can provide standard kernels as well as custom kernels. Nevertheless, SVM can’t be used 
in larger training sets as its training time with SVM can take longer. SVM is also not practical on datasets with distortion, 
especially with overlapping classes. 

(2) 
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1.5 Application of Unmanned Aerial Vehicle (UAV) on Oil Palm Plantation 

Remote sensing research has been a rise in the field of oil palm plantation. Enforcing unmanned aerial vehicles 
(UAVs) in environmental and scientific research fields is already a technology that will help to accelerate even more 
developments throughout the future. However, UAVs are now a new method that has been used widely in the oil palm 
industry in the last few years. It benefits the sector from added values such as flexibility, low cost, reliability, and 
effectiveness in the timely supply of high-resolution data [25]. Nevertheless, UAVs currently have limited flight times 
and payload size, restricting the possible range of operations and the type of sensors that can be carried. The image is 
mainly based on technologies such as red, green, blue (RGB), multi-spectral, and thermal infrared. LiDAR sensors are 
widely used to enhance the assessment of particular plant’s characteristics [26]. 

UAVs can help sustainable oil palm plantation practices in a few ways. Firstly, UAVs are effective when it 
comes to monitoring and surveying. Palm oil monitoring can be conducted for numerous reasons, such as tree counting, 
area of distribution, and many more. UAVs are able to obtain reliable imagery and turn it into a detailed map that consists 
of topography, height, terrain, and the like. It will be a huge help in replanting and preparing crop arrangements. This 
aid can ensure optimum returns and income while keeping the health of the environment on track. By implementing 
UAV, main areas with a high probability of land movement can also be established, and a mitigative plan can be 
introduced before it becomes a high risk and affects the crops and environment in the area.  

2. Materials and Methods 

2.1 Study Area 

The study areas of this research focused on the comparison of small-scale oil palm plantations and big-scale oil 
palm plantations. The small-scale oil palm plantation area is located in Jeli, Kelantan, while the big-scale oil palm 
plantation is located in Keratong, Pahang.  

2.1.1 Jeli, Kelantan 

The study of oil palm tree recognition was conducted near Bandar Jeli, 17600 Jeli, Kelantan. The oil palm 
plantation is located at 5°42'34.3"N 101°50'41.9"E. The flying altitude of the drone is 54.8 m. The coverage area is 
around 0.0227 km² (Fig. 1). 

 

Fig. 1: The location of the study site of the oil palm plantation near Bandar Jeli 

2.1.2 Keratong, Pahang 

The second study area is Keratong, Pahang. The data was retrieved from Malaysian Palm Oil Berhad (MPOB) 
which is located at 2°47'47.62"N 102°55'7.97"E. The coverage area is around 0.5 km2 (Fig 2). 
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Fig. 2: The location of the study site of the oil palm plantation at Keratong 

2.2 Data Acquisition  

This study used images from an optical drone with three bands: red, green, and blue (RGB) bands. The type of 
drone used is Parrot ANAFI. The captured images were collected to be analyzed, and a structured set of databases from 
oil palm trees was developed using drone images. 
 

2.2.1 Drone Images 

The drone images of oil palm plantations have been stitched by using Agisoft Software, and an orthomosaic 
photos were produced (Fig. 3 and Fig. 4). 

     
 

     
 

     
 

 
Fig. 3: Drone images of Jeli oil palm plantation 
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Fig. 4: Drone image of Keratong oil palm plantation 

2.3 Data Processing and Analysis 

There are three main algorithms involved in this work, which are the Gray-Level Co-Occurrence Matrix 
(GLCM), Haar Wavelet, and template matching, which has been used in Eq. (7). For GLCM, there are eight parameters 
that need to be manipulated to determine which parameters gives highest impact on tree counting. 

2.3.1 Gray-Level Co-Occurrence Matrix (GLCM) 

GLCM is a method of extracting second-order statistical texture features, a matrix where the number of rows 
and columns is equal to the number of gray levels, G, in the image.  According to Eq. (8), GLCM can be defined as a 
higher-order set of texture measures based on brightness value spatial-dependency gray-level co-occurrence matrix 
(GLCM) has been widely used in image processing for remote sensing applications.  

 𝐶𝐶𝑖𝑖,𝑗𝑗 = ∑ ∑ 𝑃𝑃{𝐼𝐼(𝑥𝑥, 𝑦𝑦) = 𝑖𝑖 & 𝐼𝐼(𝑥𝑥 ± 𝑑𝑑∅1,𝑦𝑦 ± 𝑑𝑑∅2 = 𝑗𝑗)}𝑁𝑁−1
𝑦𝑦=0

𝑀𝑀−1
𝑥𝑥=0      (3) 

Where if the argument is true, it will become 0; otherwise, Among 14 texture features described in Eq. (9) for 
each of GLCM, we have selected the following eight for our analysis which were contrast (CON), correlation (CORR), 
dissimilarity (DISS), energy (ENE), entropy (ENT), homogeneity (HOM), mean (MEAN) and variance (VAR): 

 𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ ∑ (𝑖𝑖 − 𝑗𝑗)2𝑐𝑐(𝑖𝑖, 𝑗𝑗)𝑗𝑗𝑖𝑖          (4) 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ ∑ (𝑖𝑖 − 𝑢𝑢𝑥𝑥)�𝑗𝑗 − 𝑢𝑢𝑦𝑦� 𝑐𝑐(𝑖𝑖, 𝑗𝑗) �𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦�⁄𝑗𝑗𝑖𝑖        (5) 

 𝐷𝐷𝐼𝐼𝐷𝐷𝐷𝐷 = ∑ ∑ |𝑖𝑖 − 𝑗𝑗|𝑐𝑐(𝑖𝑖, 𝑗𝑗)𝑗𝑗𝑖𝑖          (6) 

 𝐸𝐸𝐶𝐶𝐸𝐸 = ∑ ∑ �𝑐𝑐(𝑖𝑖, 𝑗𝑗)�
2

𝑗𝑗𝑖𝑖           (7) 

 𝐸𝐸𝐶𝐶𝐸𝐸 = −∑ ∑ 𝑙𝑙𝑙𝑙𝑙𝑙�𝑐𝑐(𝑖𝑖, 𝑗𝑗)�𝑐𝑐(𝑖𝑖, 𝑗𝑗)𝑗𝑗𝑖𝑖         (8) 

 𝐻𝐻𝐶𝐶𝐻𝐻 = ∑ ∑ 1
1+(𝑖𝑖−𝑗𝑗)2

𝑐𝑐(𝑖𝑖, 𝑗𝑗)𝑗𝑗𝑖𝑖           (9) 

 𝐻𝐻𝐸𝐸𝑀𝑀𝐶𝐶 = ∑ 𝑖𝑖 ∙ 𝑐𝑐𝑥𝑥+𝑦𝑦(𝑖𝑖)𝑖𝑖=2           (10) 

 𝑉𝑉𝑀𝑀𝐶𝐶 = ∑ ∑ 𝑐𝑐(𝑖𝑖, 𝑗𝑗)(𝑖𝑖 − 𝜇𝜇)2𝑗𝑗𝑖𝑖          (11) 

Besides these eight statistics parameters, the offsets are also manipulated to see the effects of angle and direction 
in tree detection. Offset is a p-by-2 array of integers specifying the distance, d, between the pixel of interest and its 
neighbor. In this study, the GLCM parameters have been measured on five different distances, d of 1, 2, 3, 4, and 5 
pixels spacing, and three different directions, ∅ of 0°, 45° and 90°. Then, by taking the average of measurement based 
on these ∅ only the eight texture features are calculated.  

 

 



Intan Noradybah Md Rodi et al. Malays. J. Bioeng. Technol. Vol. 1, No. 1, (2024): 66-81 

 

74 
eISSN Number: 3036-017X © 2024 

UMK Press. All rights reserved 

2.3.2 Haar Wavelet 

Wavelet is a finite-energy function with localization properties that can be used efficiently to represent transient 
signals.  The wavelet transform can be interpreted as a decomposition of the original signal into a set of independent 
frequency channels.  Window function of wavelet transform: 
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

 −
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a

bt
a

tab
1ψ

          (12) 

The technical disadvantage of the Haar wavelet is that it is not continuous and, therefore not differentiable.  This 
property can, however, be an advantage for the analysis of signals with sudden transitions, such as monitoring of tool 
failure in machines.  The Haar wavelet's mother wavelet function can be described as 

           (13) 

Haar wavelet scaling function can be described as 

          (14) 

2.3.3 Template Matching 

The critical idea of template matching was to compare a small portion of an image to be detected against all 
local regions in the image by cross-correlate with a filter Eq. (7). The best linear operator of the filter for finding an 
image patch is essentially the patch itself. The matching process moves the template image to all possible positions in 
the target image and computes a numerical index that indicates how well the template matches the image in that position. 
The numerical index can be determined by the strength of the linear association of template, t, with the target image, I, 
where the cross-correlation, CtI has been used: 

 𝐶𝐶𝑡𝑡𝑡𝑡 = ∑ ∑ 𝑡𝑡(𝑚𝑚,𝑛𝑛)𝐼𝐼(𝑚𝑚,𝑛𝑛)𝑛𝑛𝑚𝑚          (15) 

However, this raw cross-correlation is higher only when darker parts of the template overlap with darker parts 
of the image and brighter parts of the template overlap with brighter parts of the image. This will lead to different scores 
if they match the illumination intensities of the same image. In solving the different intensity images, both the template’s 
pixels and the target image have to be normalized as follows: 

 �̂�𝑡 = 𝑡𝑡−𝑡𝑡̅
∑(𝑡𝑡−𝑡𝑡̅)2

 , 𝐼𝐼 = 𝑡𝑡−𝑡𝑡̅
∑(𝑡𝑡−𝑡𝑡̅)2

          (16) 

and the raw cross-correlation in Eq. (17) will become the normalized cross-correlation, r as follows: 

 𝑟𝑟 = ∑ ∑ (𝑡𝑡𝑚𝑚𝑚𝑚−𝑡𝑡̅)(𝑡𝑡𝑚𝑚𝑚𝑚−𝑡𝑡)̅𝑚𝑚𝑚𝑚

�(∑ ∑ (𝑡𝑡𝑚𝑚𝑚𝑚−�̅�𝑡)2𝑚𝑚𝑚𝑚 )(∑ ∑ (𝑡𝑡𝑚𝑚𝑚𝑚−𝑡𝑡)̅2𝑚𝑚𝑚𝑚 )
        (17) 

3. Results and Discussions  

3.1 Development of Database of Oil Palm Tree 

The drone images of both oil palm plantations were analyzed, where they were classified on the basis of oil 
palm trees and non-oil palm trees. Based on the drone images, the characteristics of each type of oil palm can be 
determined from its crown. The characteristics of oil palm crowns are that they basically look like flower petals [27]. 
The patterns of crowns are used to mark the oil palm tree and non-oil palm tree. The database of oil palm trees based on 
the drone images is displayed in Fig. 5 and 6. 
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Fig. 5: oil palm tree (red mark) and non-oil palm tree (blue mark) in Jeli 

 
Fig. 6: The location of oil palm tree (red mark) and non-oil palm tree (blue mark) in Keratong 

Table 1 shows the marking point for both oil palm and non-oil palm trees at Jeli and Keratong oil palm 
plantations. The total for oil palm trees for Jeli and Keratong plantations is 764 points and 2822 points, respectively. 
The total non-oil palm for Jeli is 608 points, while for Keratong is 3222 points. 

Table 1: Database of oil palm trees based on drone images 

Study Area Oil Palm Tree Non-oil Palm Tree 
Jeli 764 608 

Keratong 2822 3222 
 

The database consists of training and testing. The oil palm database is divided into a train set and a test set. The 
train set was a model that classified the image into two categories: oil palm and non-oil palm. The database was analyzed 
into two categories: 50:50 analysis and 60:40 analysis. 

Table 2: Classification of the database of the oil palm tree with 50:50 analysis  

Study Area Category Oil Palm Tree Non-oil Palm Tree Total 
Jeli Training Set 382 304 686 

 Testing Set 382 304 686 
Keratong Training Set 1611 1411 3022 

 Testing Set 1611 1411 3022 
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3.2 Determination of the Window Size for Classification of Oil Palm Tree Database 

Before the accuracy results are obtained from the Support Vector Machine (SVM), the window size needs to be 
selected. Since the drone was flown at a low altitude in Jeli plantation (Fig. 7), the bigger window was tested. It is tested 
on different window sizes of 100 x 100 pixels, 150 x 150 pixels, 200 x 200 pixels, and 250 x 250 pixels. 

 
Fig. 7: Different sizes of windows for Jeli Plantation 

 

 

 

  

   

Fig. 8: Oil palm tree in Jeli with window size for (a) 250, (b)100 and (c) 150 pixels.  

 
Fig. 9: Non-oil palm tree with a window size of 250 pixels 

Fig. 8 and 9 show a clear image of oil palm and non-oil palm trees in different sizes of windows.  In this study 
area, which is Jeli Plantation, 250 x 250 pixels were used. This is because the oil palm crown can be covered on this 
specific window, and the accuracy of using this window is higher than that of another. A window size of less than 250 
may only cover a few parts of the oil palm crown.  

For the Keratong plantation, the drone was flown higher compared to the Jeli plantation. Hence, the smaller 
window was tested to determine the best window for the image. It is tested on different window sizes of 20 x 20 pixels, 
40 x 40 pixels, and 100 x 100 pixels. 

Fig. 10 clearly represents an oil palm tree in various window sizes at the Keratong plantation. The study area 
was 40 by 40 pixels in size. This is because this particular window can be used to cover the oil palm crown, and this 
window has better accuracy than others. While 100 x 100 pixels is too huge for the image of the oil palm crown, windows 
smaller than 40 may only cover a small portion. 

 

(a) (b) (c) 
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(a)                                                    (b)                                                    (c) 

Fig. 10: Oil palm tree in Keratong with window size for (a) 20, (b)40 and (c) 100 pixels.  

Given the results (Table 3), it is shown that for both locations, Haar Wavelet recorded a higher accuracy 
compared to the other algorithms, with 83.75% for Jeli and 86.99% for Keratong. However, there were differences in 
the window size, as Haar wavelet recorded high accuracy in Jeli for window size 250 x 250 pixels and for window size 
44 x 44 pixels in Keratong. 

As regards the window size used for every computation for the overall accuracy of each algorithm, the statistic 
parameter and the offset for the oil palm trees and the non-oil palm trees is 250 x 250 pixels. This is due to the fact that 
texture features often have poor extraction accuracy using small window sizes, while better accuracy has been seen in 
larger sizes [27]. This means that an accurate estimate of the population parameter is only obtained when the sample 
size is large. 

Table 3: Overall accuracy for GLCM, wavelet transforms & template matching for different analysis  

Study Area Window Size Accuracy for 
Overall GLCM (%) 

Accuracy for Wavelet 
Transform Overall (%) 

Accuracy for Template 
Matching Overall (%) 

Jeli 
150 54.06 43.57 38.26 
250 49.85 83.75 61.30 
300 48.35 51.18 33.28 

Keratong 
30 79.44 84.81 59.99 
40 76.24 86.90 75.81 
44 72.47 86.99 68.20 

3.3 Classification Result of Oil Palm Tree Database Based on Drone Images 

Based on the results obtained from the Support Vector Machine (SVM), the highest accuracy was achieved 
using the Wavelet Transform. It is tested on both oil palm and non-oil palm.  

Based on Table 4, the wavelet transform algorithm has a value for overall accuracy of 83.75%, 81.77% for oil 
palm, and 86.18% for non-oil palm. The template matching obtained the highest in accuracy of non-oil palm with 93% 
but got the lowest accuracy value in oil palm for every window size. Template matching shows the highest due to its 
wavelet features matching the non-oil palm requirement features.  

Table 5 presents the accuracy of different algorithms (GLCM, Haar Wavelet, and Template Matching) in 
identifying oil palm and non-oil palm areas within the Keratong study area at various window sizes (30, 40, 44). Haar 
Wavelet consistently shows high accuracy across all categories. GLCM and Template Matching algorithms also perform 
well but vary more significantly depending on the window size. The accuracy percentages are higher for oil palm 
identification compared to non-oil palm. The study highlights the potential of advanced drone-based image recognition 
techniques for optimizing plantation management and contributing to sustainable production practices. 
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Table 4: Overall accuracy for algorithms GLCM, Wavelet Transforms & Template Matching for Jeli 

Study 
Area 

Window 
Size Type of Algorithms 

Accuracy 

Overall (%) Oil palm 
(%) 

Non-oil 
palm (%) 

Jeli 

150 
GLCM 54.06 67.56 37.5 

Haar Wavelet 43.57 31.9 57.89 
Template Matching 38.26 10.72 72.04 

250 
GLCM 49.85 39.01 63.49 

Haar Wavelet 83.75 81.77 86.18 
Template Matching 61.3 35.39 93 

300 
GLCM 48.35 27.91 76.69 

Haar Wavelet 51.18 71.54 23.13 
Template Matching 33.28 5.69 71.27 

 

Table 5: Overall accuracy for algorithms GLCM, Wavelet Transforms & Template Matching for Keratong 

Study Area Window 
Size Type of Algorithms 

Accuracy 

Overall (%) Oil palm 
(%) 

Non-oil 
palm (%) 

Keratong 

30 
GLCM 79.44 86.83 73.09 

Haar Wavelet 84.81 87.71 81.5 
Template Matching 59.99 32.09 91.85 

40 
GLCM 76.24 93.23 56.84 

Haar Wavelet 86.9 90.88 82.35 
Template Matching 75.81 61.82 91.78 

44 
GLCM 72.47 92.11 50.07 

Haar Wavelet 86.99 91.68 81.63 
Template Matching 68.2 43.6 96.25 

From the result, it concluded that the reason why every single parameter was changed was to see the difference 
and the implications on the number of trees detected. For GLCM, the statistical parameters include contrast, correlation, 
dissimilarity, energy, entropy, homogeneity, mean, and variance. 

Table 6 shows that for window size 300x 300 pixels, the highest accuracy overall is from the correlation 
parameter, which is 57.01%. and 81.84% for oil palm accuracy. However, for non-oil palm accuracy, Correlation 
recorded the lowest accuracy with 22.56%. As for the window size of 250x250 pixels, Dissimilarity recorded the highest 
accuracy with 51.17% overall. Three parameters recorded a zero reading for oil palm accuracy and 100 % accuracy for 
non-oil palm, which are Energy, Entropy, and Mean.  

This statistic can also be used to measure every category for the oil palm tree. Correlation, entropy, and 
homogeneity can be alternatives in order to increase the accuracy [28]. Basically, there are three algorithms used for 
analyzing the oil palm tree recognition. There are Gray-Level Co-Occurrence Matrix (GLCM), Haar Wavelet and 
Template Matching. These three algorithms provide different accuracy values for each of them. In addition, there are 
also eight statistical parameters, including Contrast Analysis (CON), Correlation (CORR), Dissimilarity (DISS), Energy 
(ENE), Entropy (ENT), Homogeneity (HOM), Mean (MEAN) Variance (VAR), and offset can be adjusted to identify 
the data accuracy. Besides that, the reason why this study used 250 window sizes is to get more precise and clear images 
of oil palms. The high-resolution images of oil palms really help in distinguishing between one and another trees. 
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Window size 250 x 250 pixels helps to cover the whole crown of the oil palm compared to the size of a window less 
than 250 x 250 pixels, where they only cover half of the crown. 

Table 6: Overall accuracy for statistics parameter in Jeli plantation 

Study 
Area 

Window 
Size Statistic Parameter  

Overall 
Accuracy 

(%) 

Oil Palm 
Accuracy 

(%) 

Non-Oil 
Palm 

Accuracy 
(%) 

Jeli 

150 

Contrast 47.27 18.77 82.24 
Correlation 45.79 10.72 88.82 

Energy 44.9 0 100 
Homogeneity 51.26 84.72 10.2 

Dissimilarity 45.64 47.18 43.75 
Entropy 44.9 0 100 

Mean 48.3 47.45 49.34 
Variance 46.09 27.88 68.42 

250 

Contrast 47.67 18.85 83.88 
Correlation 45.63 4.45 97.37 

Energy 44.31 0 100 
Homogeneity 50.29 71.47 23.68 

Dissimilarity 51.17 36.91 69.08 
Entropy 44.31 0 100 

Mean 44.31 0 100 
Variance 44.9 10.99 87.5 

300 

Contrast 43.15 5.42 95.49 
Correlation 57.01 81.84 22.56 

Energy 41.73 0 99.62 
Homogeneity 42.68 8.94 89.47 

Dissimilarity 41.73 0 99.62 
Entropy 41.73 0 99.62 

Mean 41.73 0 99.62 
Variance 45.5 10.84 93.61 

 

Table 7 depicts a comparison of the accuracy of various parameters for window sizes 30, 40, and 44. Window 
size 40 recorded the highest accuracy among the other window sizes, with 62.96% for parameter Variance. For window 
size 30, contrast recorded the highest overall accuracy, and 59.86% was recorded for window size 40. For Keratong, the 
study used a window size of 40 x 40 pixels to obtain more precise and clear images of oil palm trees. High-resolution 
images help distinguish between individual trees. Window sizes less than 40 x 40 pixels only cover half of the crown of 
oil palm trees. 
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Table 7: Overall accuracy for statistics parameter in Keratong plantation 

Study Area Window 
Size 

Statistic 
Parameter 

Overall 
Accuracy 

(%) 

Oil Palm 
Accuracy 

(%) 

Non-Oil 
Palm 

Accuracy 
(%) 

KERATONG 

30 

Contrast 64.18 27.08 96.1 
Correlation 57.1 69.88 46.1 

Energy 53.71 0 99.33 
Homogeneity 63.84 79.01 50.78 

Dissimilarity 53.71 0 99.93 
Entropy 53.71 0 99.93 

Mean 53.71 0 99.93 
Variance 58.28 11.11 98.87 

40 

Contrast 62.11 43.7 83.13 
Correlation 52.15 34.89 71.86 

Energy 46.69 0 100 
Homogeneity 60.36 83.67 33.73 

Dissimilarity 46.99 0.56 100 
Entropy 46.69 0 100 

Mean 47.35 1.74 99.43 
Variance 62.97 48.85 79.09 

44 

Contrast 59.86 43.73 78.26 
Correlation 50.2 19.69 84.99 

Energy 46.69 0 99.93 
Homogeneity 59.76 76.46 40.72 

Dissimilarity 46.69 0 99.93 
Entropy 46.69 0 99.93 

Mean 46.69 0 99.93 
Variance 58.24 33.04 86.97 

4. Conclusion 

This research study has shown a method that does no harm to the oil palm and facilitates the user to practice the 
recognition technique on the tree. The algorithms, including Gray Level Co-Occurrence Matrix (GLCM), Haar Wavelet, 
and Template Matching, provide a good assist in getting the accuracy of the data. Haar Wavelet proves this algorithm 
can give the highest value on overall accuracy. The other eight statistic parameters can also be used to manipulate the 
GLCM, while offset parameters can improve accuracy so that users can also apply the algorithm to other applications 
or methods. High spatial resolution imagery is ideal for use in this area, allowing the researchers to clearly see the size 
and pattern of the oil palm tree crown.  
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