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ABSTRACT 

An ecological model serves as a simplified representation of a real-world system, aiming to capture 
our current understanding of its functioning through the use of mathematical relationships, computer 
code, and rules. Ecological modeling gained remarkable popularity as a tool in environmental 
management during the 1970s. Over time, various tools and approaches for ecological modeling have 
been invented and developed. Ecological models are crucial in supporting environmental decision-
making by predicting ecological consequences and helping achieve societal objectives. This paper 
aims to review recent model types, approaches, and tools used by ecologists by consolidating peer-
reviewed research articles published from 1984 to 2023. The results revealed that researchers employ 
unique model types to address specific ecosystem situations. These model types include dynamic, 
population dynamic, static, structurally dynamic, artificial neural networks, fuzzy, individual-based, and 
cellular automata, ecotoxicological, spatial, stochastic, and hybrid/integrated models. Each model has 
limitations in its application and is suitable for specific situations. However, integrated/hybrid models 
are recommended as they combine multiple model types, enhancing their effectiveness. Different 
model approaches such as Ecopath, Ecosim, Ecospace, Ecotroph, and Ecopath with Ecosim are 
utilized for modeling ecosystems and predicting outcomes amidst disturbances caused by 
anthropogenic factors, fishing impacts, and climate change. These model approaches greatly 
contribute to our understanding of ecosystems. However, despite the variety of methods available, 
authors still encounter challenges when using these methods, leading to the evolution and refinement 
of additional approaches and tools that will continue to emerge in the future. Future ecologists should 
device a general model that will serve as a tool to represent the ecological state of an area. 

© 2025 UMK Publisher. All rights reserved. 

1. INTRODUCTION
The sea is an exceptionally delicate system,

vulnerable to even minor environmental changes (BFAR, 
2010). Recently, a combination of human-induced factors, 
including climate change, habitat loss, and degradation, has 
exerted significant pressure on ecosystems worldwide (Travis, 
2003). The consequence of this has been the worldwide 
depletion of fishery resources and the deterioration of marine 
ecosystems (Worm et al., 2009; Pitcher and Cheung, 2013). 
The ongoing challenge faced by fisheries, conservation 
managers, and society is to find a balance between the 
inherent value of natural resources and their utilization 
(Thrush and Dayton, 2010). The importance of Earth's ecology 
for human health, well-being, and the economy is evident. 
However, our understanding of the services provided by 
ecosystems remains limited (Millennium Ecosystem 
Assessment, 2005; Hindmarch et al., 2006). It is crucial to 

adopt a broader perspective that considers ecosystem 
function and interactions, including critical food web 
relationships, to ensure the vitality and resilience of valued 
ecosystems (Thrush and Dayton, 2010). Acknowledging the 
growing importance of comprehending and foreseeing the 
ecological outcomes resulting from various management 
approaches. Schuwirth et al. (2019) underscore the 
significance of bolstering decisions related to environmental 
management. In light of the existing perils faced by the marine 
environment, the proposition of an ecosystem-based 
approach to marine resource management has emerged. This 
approach entails safeguarding the integral processes and 
elements within the ecosystem that contribute to its structure 
and functionality, ultimately ensuring the provision of 
ecosystem goods and services to humanity (Pikitch et al., 
2004; Arkema et al., 2006). 



J. Trop. Resour. Sustain. Sci. 15 (2025): 71-88 
  

 

72 eISSN Number: 2462-2389  © 2025 UMK Publisher. All rights reserved. 

 

The Ecosystem-based Approach to Fisheries (EAF) 
framework has garnered substantial attention among the 
scientific community, resulting in the emergence of novel 
tools, including ecological models and indicators, in recent 
years (Link, 2011; Plagányi, 2007). These tools play a pivotal 
role in incorporating ecological and ecosystem factors into 
management initiatives. By facilitating the evaluation of 
species-fisheries interactions and their repercussions for 
marine fisheries management, they provide valuable support 
for the implementation of efficient strategies based on 
ecosystem considerations (Corrales et al., 2015; Thrush and 
Dayton, 2010). Ecologists often utilize models to simulate and 
study the systems they investigate, providing insights into 
system operations, data requirements, and knowledge gaps 
(Jackson et al., 2000). Ecological models not only contribute 
to our understanding and prediction of ecological 
consequences (Schuwirth et al., 2019) but also help estimate 
ecological risks, as demonstrated by numerous existing 
studies. For instance, Ni et al. (2019) developed a hybrid 
model called a multi-cloud-fuzzy support vector machine (MC-
FSVM) to assess risks in various regions across five countries. 
Their study highlighted the influence of certainty levels on risk 
grading, making their framework a valuable alternative for 
ecological risk estimation. Similarly, Sajid et al. (2020) 
employed a model to evaluate the ecological risk of oil spills 
in Arctic waters, while Gribble (2003) focused on assessing 
the impacts of major fisheries and management plans on 
different ecosystems, including mangroves, lagoon-seagrass, 
as well as coral reefs. In addition to the aforementioned 
research, Christensen et al. (2015) developed a sophisticated 
model that predicts the combined influence of environmental 
factors and fisheries on worldwide seafood production. To 
evaluate its performance, they conducted a retrospective 
analysis of the global ocean, encompassing primary 
producers, top predators, and fisheries. This model represents 
a significant advancement in assessing the global impact of 
various fisheries management approaches in mitigating the 
impacts of climate change. Furthermore, Bacalso and Wolff 
(2014) conducted a study in the Danajon Bank area, 
constructing a trophic model of the fishery system to 
understand its trophic structure, dynamics, and ecological 
interactions. Their model provided crucial initial insights into 
how the fishery influences the structure and functioning of the 
ecosystem. Thus, models are employed for decision-making 
under uncertainty and optimizing those decisions (Tixier et al., 
2013), further highlighting their versatility and usefulness in 
various contexts. 

As mentioned earlier, ecosystem modeling plays a 
crucial role in marine conservation by examining the 
implications of various management strategies and temporal 

and spatial changes in ecosystems (Shannon et al., 2010; 
Christensen, 2013). Ecologists are continually developing and 
utilizing diverse methods to create models that closely 
represent ecosystems, enabling them to understand and 
address potential impacts more effectively. Recognizing the 
significance of ecological modeling, this paper aims to provide 
a comprehensive review and discussion of the concept, 
applications, and contributions of ecosystem modeling. The 
paper offers an overview of ecological modeling, including the 
identification of different types, tools, approaches, and their 
importance. It also addresses the challenges faced in 
ecological modeling and proposes potential solutions. 
Additionally, the future directions of ecological modeling are 
discussed. To illustrate the importance of ecological modeling, 
the paper includes examples of published studies that 
demonstrate its practical applications and provide further 
insights. This review paper serves as a valuable resource for 
students and aspiring ecological modelers, offering them an 
overview of ecological modeling and guiding them on the right 
path to begin their journey. It provides essential information 
that beginners will find useful and educational. 

2. OVERVIEW OF ECOLOGICAL MODELING 
The aim of fisheries management is not to halt fishing 

altogether, but rather to prevent it from being destructive, 
excessive, and wasteful. The primary objective is to ensure 
sustainable fishing practices (BFAR, 2010). Modern fishing 
activities significantly alter the ocean environment by 
disturbing the sea floor, modifying food webs, and disrupting 
vital ecosystem functions (Thrush and Dayton, 2010). 
However, environmental management decisions should be 
grounded in the latest scientific knowledge while also 
considering diverse societal objectives with varying degrees 
of importance for different stakeholders (Schuwirth et al., 
2019). Ecological models serve as abstractions of real-world 
systems (Jeffers, 1988), utilizing mathematical relationships, 
rules, and computer code to encapsulate our current 
understanding of system functioning. Models serve as 
simplified representations of real-world phenomena, enabling 
us to gain a deeper understanding of those phenomena 
(Weisberg, 2007; Sutherland, 2006). Ecological modeling is 
the use of systems analysis and simulation to mimic complex 
ecological systems by summarizing available relevant 
information. The process includes the development of 
conceptual and quantitative models, and the evaluation and 
use of the model to answer the specific questions for which 
the model was built (Pittroff and Pedersen, 2005). 
Interestingly, even ecologists who lack expertise in 
mathematical modeling or coding can still benefit from existing 
ecological models as virtual laboratories. These models 
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enable the examination of different hypotheses, assist in 
experimental planning, provide predictions about future 
system states, facilitate scenario analyses, and contribute to 
decision-making processes concerning environmental and 
resource management. By leveraging ecological models, 
researchers can explore and navigate the complexities of 
ecological systems more effectively (Pittroff and Pedersen, 
2005; Kennedy, 2019). The more knowledge exists about the 
system, the better we can predict its response. Such 
knowledge can consist of mechanistic understanding and of 
empirical data (Schuwirth et al., 2019). 

Numerical models of ecological systems are 
increasingly used to address complex environmental and 
resource management questions (Planque et al., 2022). In this 
type of field, models commonly take the form of mathematical 
constructs (Weisberg, 2007). Ecological models are essential 
for the development of future safeguards for our life support 
systems (Pittroff and Pedersen, 2005). Models are assuming 
a growing significance in diverse fields, such as providing 
inputs for regulatory guidelines (National Research Council, 
2007), assisting in the management of conservation and 
natural resources (Fieberg and Ellner, 2001), and predicting 
the ecological ramifications of climate change (Keane et al. 
2001). The utilization of ecological models has tangible 
implications as it advances ecological theory, facilitates 
science-driven decision-making, and informs policymaking 
processes. Consequently, it becomes imperative that the 
insights derived from ecological models rest upon robust 
quantitative foundations that are both credible and reliable 
(Kennedy, 2019). In the realm of ecological understanding, the 
concept of resilience recognizes and embraces uncertainty, 
emphasizing the importance of employing multiple 
approaches to managing human activities to ensure the 
maintenance of ecosystem functions (Thrush and Dayton, 
2010). As human interactions continue to shape biological 
systems, the demand for robust and comprehensive tools to 
assess the sustainability of these systems has grown. This 
has led to a recent increase in the use of ecological models, 
as they offer valuable support in evaluating the long-term 
viability of ecosystems impacted by human influences 
(Rawlings et al., 2020). 

Ecological modeling has a rich history, gaining 
significant popularity as a tool in environmental management 
during the 1970s. At that time, three primary types of models 
were commonly used. The first involved population dynamic 
models, which represented age structure using matrices. The 
second category comprised dynamic models based on 
biogeochemical or bioenergetic principles, utilizing differential 
equations. On the other hand, static models, where all 
differential equations equated to zero, were employed to 

depict extreme or average scenarios (Jørgensen and 
Swannack, 2019). In recent times, numerous models have 
been proposed to enhance our comprehension of the dynamic 
interactions occurring within ecosystems. Socio-economic-
ecological models are a noteworthy example that analyzes the 
complex relationship between the environment, natural 
predators, and human populations as they utilize ecological 
systems to meet the demands of industrial and energy sectors 
(Rawlings et al., 2020). Furthermore, Jørgensen (2011), as 
cited by Guo et al. (2015), identified five distinct generations 
in the historical progression of ecological models. These 
generations represent significant advancements in the field 
and are illustrated in Figure 1, showcasing the evolution of this 
scientific approach. Ecological modeling has long been 
pursued by scientists seeking to understand and assess the 
state of the environment. 

To offer a comprehensive overview of ecological 
models, Jørgensen and Swannack (2019) presented five 
distinct classifications that can be used to categorize these 
models:   

1. What is modeled: matter, energy, or population;  
2. Classification of all the models in nine different 

pairs of models (this classification involves as 
much as 29 = 512 classes);  

3. Type of model employed (11 types given);  
4. Type of system modeled; and  
5. Type of problem modeled.  

 
Jørgensen and Swannack (2019) show in Table 1 

what is modeled, the organization, and the 
pattern. 

 

Figure 1. Schematic representation of the development of ecological and 
environmental models (Jørgensen, 2011). 
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Models can be characterized by three common aspirations. 
Firstly, they can be general, which means their conclusions 
apply to a broad-spectrum of real-life systems, capturing 
essential principles that apply to various scenarios. Secondly, 
models can be realistic, accurately reflecting the functioning of 
a specific system and closely aligning with real-life 
observations. Lastly, models can strive for precision, providing 
predictions for specific circumstances with minimal uncertainty 
(Evans, 2012). Table 2 presents a classification of models 
based on nine pairs of model types. This classification 
suggests that all models fall into one of 512 classes, 

encompassing all possible combinations of these nine pairs. 
For instance, a model could be classified as a research model, 
which means it is deterministic while also being a 
compartment model that is dynamic, causal, nonlinear, 
distributed, spatial, and holistic (Jørgensen and Swannack, 
2019). Alternatively, the model could be classified as a 
stochastic management model that is dynamic, linear, 
compartmentalized, lumped, non-spatial, and holistic in 
nature. This classification framework helps to understand the 
diverse characteristics and attributes of different models.

Table 1. Classification of models (Jørgensen and Swannack, 2019). 
Modeled/Measured  Organization  Pattern  Model Type  
Number of individuals  Conservation of genes  Life cycles  Biodemographic  
Energy  Conservation of energy  Energy flow  Bioenergetic  
Mass or concentration  Conservation of mass  Element flow  Biogeochemical  
    

 
Table 2. Classification by model pairs (Jørgensen and Swannack, 2019). 

Pair 1: Is the model applied for research or management?  
     Research models  
     Management models  

Pair 2: Is the model deterministic or stochastic?  
     Deterministic models  
     Stochastic models  

Pair 3: Does the model apply matrices or differential equations?                
     Matrix models       
     Compartment models  
Pair 4: Are the variables dependent or not on time?  
     Dynamic models          
     Static models  

Pair 5: Are the equations linear or nonlinear?  
     Linear models  
     Nonlinear models  

Pair 6: Is the model based on casualty, or is no casualty included?       
     Casual models  
     Black box models  

Pair 7: Are the parameters (the properties of the state variables) dependent on time and/or space or constant?  
     Distributed models  
     Lumped models  
Pair 8: Is a reductionistic or holistic model approach applied?  
     Reductionistic models  
     Holistic models  

Pair 9: Is the model considering spatial distribution?  
     Spatial models  
     Nonspatial models  

Pair 10: Are the equations solved numerically or analytically?  
     Numerical models  
     Analytical models  

Pair 11: Are the model results discrete or continuous?  
     Discrete models    Continuous models  
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Furthermore, Evans (2012) emphasizes that when 
developing a model, it is crucial for the modeler to determine 
the specific characteristics they wish to emphasize. It is 
important to note that it is not feasible to maximize all desirable 
characteristics simultaneously, as philosophical 
considerations suggest (Evans, 2012). Therefore, during the 
modeling process, sacrifices need to be made in terms of 
certain points or parameters in order to prioritize the desired 
prediction. This process is commonly referred to as modeling 
trade-offs. Figure 2 illustrates the schematic representation of 
how these trade-offs occur.  

In recent ecological studies, a plethora of innovative 
modeling techniques have been proposed and regularly 
employed (Guo et al., 2015). When it comes to modeling, a 
selection of a scale and form that aligns with the specific 
questions being solved is a fundamental principle (Ainsworth 
and Walters, 2015). In terms of form, various model types are 
worth considering, such as individual-based models (Shin and 
Cury, 2004; Poloczanska et al., 2013), size-based models 
(Jennings et al., 2008; Smith et al., 2010), as well as models 
for trophic food web (Christensen and Pauly, 1992). To 
provide a comprehensive overview, Table 3 presents eleven 
distinct model types utilized in the modeling of ecological 
systems, along with their corresponding descriptions, 
advantages, and disadvantage. 

 

 

Figure 2. Schematic of modeling trade-offs (Evans, 2012). 

 
From 2000 onwards, there was a greater utilization 

of Structurally Dynamic Models (SDMs), Artificial Neural 
Networks (ANN), and Individual-Based Models (IBMs) in 
environmental applications. This trend was driven by the 
increased availability of modeling software and the growing 
demand for these types of models. The accessibility of 
software for running large, intricate simulations in a relatively 

short time period has led to the widespread utilization of static 
models such as food web models. These models are 
particularly valuable for studying fisheries as well as 
numerous aquatic ecosystems (Jørgensen and Swannack, 
2019). Leroy (2022) reviewed thoroughly the SDMs on his 
paper which highlighted in addressing the gap in choosing this 
type of model. In recent years, the use of ecological niche 
models (ENMs) and SDMs to explore the patterns and 
processes behind observed distribution of species has 
experienced an explosive growth. Although the use of these 
methods has been less common and more recent in marine 
ecosystems than in a terrestrial context, they have shown 
significant increases in use and applications. Herein, Melo-
Merino et al. (2020) made a systematic review of 328 articles 
on marine ENMs and SDMs published between 1990 and 
2016, aiming to identify their main applications and the 
diversity of methodological frameworks in which they are 
developed, including spatial scale, geographic realm, 
taxonomic groups assessed, algorithms implemented, and 
data sources. Their study also indicates that marine ENMs 
and SDMs have been widely applied across a range of 
taxonomic groups and geographic regions. They noted biases 
toward certain species and regions with better data availability 
and identified challenges such as inconsistent methodologies 
and data gaps in underrepresented areas and emphasized the 
need for standardized approaches, expanded data collection, 
and interdisciplinary tools to improve the effectiveness of 
marine ENMs and SDMs. Despite the growth in the field, the 
study highlights the need for more standardized methods and 
better integration of diverse data sources to improve the 
accuracy and applicability of ENMs and SDMs in marine 
ecology. Additionally, a research by AlAdwani and Saavedra 
(2019) has demonstrated that incorporating higher-order 
terms in population dynamics models can promote diversity, 
enhance stability, and improve the understanding of 
ecological system dynamics. However, the authors proposed 
that while including higher-order interactions in ecological 
models may enhance predictive capabilities, it does not offer 
additional explanatory power unless the model parameters 
are ecologically constrained. Moreover, in addition to the 
eleven models presented in Table 3, there has been a 
development of several new model types such as 
Integrated/Holistic Models, Stochastic Models, Multi-scale 
Models, Agent-based Models, Adaptive Management Models 
and Coupled Human-Natural System Models. This is due to 
the increasing requirement to model complex environments, 
the integration of different disciplines, as well as remarkable 
advancements in computing power (Jørgensen and 
Swannack, 2019). 



J. Trop. Resour. Sustain. Sci. 13 (2025): xx-xx 
 

 76 eISSN Number: 2462-2389  © 2025 UMK Publisher. All rights reserved. 

Table 3. Different model types used in ecological modeling (Jørgensen and Swannack, 2019). 
Model type  Model Descriptions  Advantages  Disadvantages  

1. Dynamic Models  

    Biogeochemical and 
bioenergetics models  

The model relies on conservation principles, where changes in state 
variables are determined by the difference between incoming and 
outgoing substances. This model type has found widespread application 
in environmental management, serving as a powerful tool to comprehend 
ecosystem responses to pollutants and make predictions for the future.  

 Typically grounded in causality 
 Rooted in the principles of mass or 

energy conservation 
 Straightforward to comprehend, 

interpret, and construct 
 Software, such as system dynamics 

software, is readily accessible 
 User-friendly for making predictions 

 

 Challenging to develop and 
parameterize with diverse data 
sources 

 Relies on relatively high-quality data 
 Complex and parameter-rich models 

are difficult to calibrate 
 Unable to consider adaptation and 

shifts in species composition 

2. Static Models  

 

The model used is a biogeochemical or bioenergetic dynamic model in 
which all the differential equations are set to zero, resulting in static 
values for the state variables that represent a snapshot of the system. 
This model provides a static view of the system at a specific moment and 
does not involve predicting or projecting future dynamics. Such a model 
is commonly employed when a static representation adequately 
describes an ecological system or when making environmental 
management decisions. 

 Requires smaller databases 
compared to other model types 

 Excellent for portraying a worst-case 
or average scenario 

 Results can be easily validated and 
verified 

 

 Does not provide any information 
about dynamics and temporal 
changes 

 Unable to make predictions with time 
as an independent variable 

 Limited to providing average or worst-
case scenarios 

 

3. Population  

Dynamic Models  

This model type is based on the Lotka-Volterra model, which originated 
in the 1920s. 

Population dynamic models often incorporate age structure, commonly 
calculated using matrices. 

Population dynamics models can be classified into various types, such 
as individual-based, matrix-based, statistical, population viability 
analyses, and analytical models. 

This model type is commonly employed to monitor population 
development. 

The model type finds widespread application in the management of 
fisheries, in formulating biological opinions for threatened and 
endangered species, and in national park management. 

 Designed to track the progression of a 
population 

 Allows for the incorporation of age 
structure and consideration of 
influential factors 

 Characterized by its simplicity of 
understanding, interpretation, and 
development 

 Predominantly based on causality 

 

 

 May not always be applied in this 
model type 

 Limited scope to population dynamics 
 Robust database is necessary for its 

implementation 
 Can be challenging in certain 

scenarios in terms of calibration 
 Requires a relatively homogeneous 

database 
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4. Artificial  Neural 
Networks (ANN)  

These model types establish relationships between state variables and 
forcing functions using a diverse database. 

Although they are black box models and lack causality, they often yield 
valuable models that can be used for making predictions. However, it is 
crucial that these models are built upon a sufficiently large database to 
establish and test relationships, ideally using an independent dataset. 

  

 Can be employed when other 
methods reach their limitations  

 Straightforward to utilize  
 Provide a reliable assessment of 

certainty through the use of a test set  
 Compatible with heterogeneous 

datasets  
 Allow for near-optimal utilization of the 

available data set  
  

 Lacks causality unless algorithms are 
introduced or a hybrid model 
combining ANN and a traditional 
model is employed  

 Cannot substitute biogeochemical 
models that rely on conservation 
principles  

 Predictive accuracy is occasionally 
constrained  

5. Individual-Based Models 
(IBMs) and  

   Cellular Automata  

This model type can be seen as a reductionistic approach, where 
system-level properties arise from the interactions among individual 
agents (such as individuals within a population). 

The development of this model type aimed to investigate how 
ecosystem properties emerge through interactions among individuals, 
whether within the same species or between different species, within the 
system. 

  

 Capable of accommodating 
individuality 

 Capable of incorporating adaptation 
within a range of properties 

 Software options are available, 
although the selection may be more 
limited compared to biogeochemical 
dynamic models 

 Can encompass spatial distribution 

 

 Models become highly intricate when 
numerous properties are taken into 
account. 

 Substantial volume of data is 
necessary to calibrate and validate 
the models. 

 Thorough evaluation is required, and 
communicating the models to 
individuals without modeling expertise 
can be challenging. 

 
6. Spatial Models  Geographic Information System (GIS) is an alternative approach that 

can be deemed a convenient method for presenting model outcomes. In 
the context of aquatic ecosystems, an ideal spatial model would provide 
a comprehensive three-dimensional (3-D) depiction of processes, 
forcing functions, and state variables. Often, the focus is on accurately 
describing hydrodynamics. Spatial models are employed when it is 
essential for the results to incorporate spatial distribution. This is 
particularly crucial when the spatial arrangement significantly influences 
the model outcomes. 

  

 

 Spatial distribution, which is often 
crucial in ecology, can be covered. 

 The results can be presented in 
various informative formats, such as 
using GIS. 

  

 Typically, a vast database is required 
to obtain information on spatial 
distribution. 

 Calibration and validation processes 
are challenging and time-consuming. 

 Providing an accurate description of 
spatial patterns often necessitates the 
use of a highly intricate model. 
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7. Ecotoxicological Models  Ecotoxicological models, unlike biogeochemical models or population 
dynamic models widely used in ecotoxicology, do not represent a 
distinct model type in principle. However, it is advisable to consider 
ecotoxicological models as a separate model type due to the following 
reasons: 

a) Limited knowledge of parameters necessitates the use of 
estimation methods, which have been developed to overcome 
this limitation. 

b) Ecotoxicological models tend to be simple due to the 
incorporation of safety factors and the restricted knowledge of 
parameters. This is particularly evident in fugacity models. 

c) Ecotoxicological models often include an effect component. 

The purpose of these models is evident: to address ecotoxicological 
research and management challenges, as well as to conduct 
environmental risk assessments for chemical applications. 

 

 These models are specifically 
designed to address ecotoxicological 
issues. 

 In most cases, they are user-friendly 
and straightforward to use. 

 They frequently incorporate an effect 
component or can be readily 
interpreted to quantify the effect. 

 

 The development of models for all 
toxic substances requires a vast 
number of parameters, of which only a 
maximum of 1% is currently known. 

 Estimation methods are necessary 
but inherently come with high 
uncertainty. 

 Consequently, the model results also 
possess a high level of uncertainty. 

 Incorporating an effect component in 
the models necessitates knowledge of 
the effect, which is also limited. 

 

8. Stochastic Models  This model category exhibits a component of randomness. 

This randomness can manifest in various forms, such as the forcing 
functions, particularly the climatic forcing functions, or the model 
parameters. A stochastic model can encompass 
biogeochemical/bioenergetic models, spatial models, structural dynamic 
models, Individual-Based Models (IBM), or population dynamic models. 

  

 These models have the capability to 
account for the randomness 
associated with forcing functions or 
processes. 

 The uncertainty of the model results 
can be readily obtained by running the 
model multiple times. 

 

 Understanding the distribution of the 
random elements within the model is 
essential. 

 The model exhibits a high level of 
complexity and demands significant 
computational resources and time. 

 

9. Integrated/Hybrid Models  In principle, hybrid or integrated models can be created by combining 
any two of the ten previously mentioned model types. 

 The combination of models from 
diverse disciplines allows for the 
integration of the unique strengths 
and capabilities of each model within 
the modeling suite. 

 It diminishes the necessity to create 
new models for every specific 
scenario. 

 Disciplinary-specific approaches can 
be employed to handle spatio-
temporal dynamics. 

 The underlying assumptions of each 
model may be incompatible. 

 Communicating across disciplines 
can be time-consuming. 

 It is crucial to prioritize the design of 
input/output requirements. 
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Back in 1984, a pioneering marine ecosystem model 
named Ecopath was developed by Dr. Jeffrey Polovina and 
his team at the National Marine Fisheries Service, Honolulu 
Laboratory (Polovina, 1984). This model revolutionized the 
field of marine ecology by introducing statistical "path 
analysis" techniques to effectively portray ecological 
relationships (Christensen, 2013). Recognizing its 
significance, the United States National Oceanographic and 
Atmospheric Administration (NOAA) officially acknowledged 
Ecopath as one of their top ten scientific breakthroughs in 
2010 (Coll et al., 2015). Ecopath focuses on modeling the 
instantaneous flow of biomass within functional groups, which 
are clusters of species categorized based on their niche 
similarities (Polovina, 1984; Christensen and Pauly, 1992). 
What makes Ecopath truly exceptional is its simplicity, modest 
data requirements, and adaptability to future updates, making 
it an invaluable tool for ecosystem modeling. By utilizing 
Ecopath, researchers gain valuable insights into the structure 
and functioning of diverse marine ecosystems, especially in 
regions where comprehensive fisheries data is limited 
(Bacalso and Wolff, 2014). Furthermore, the application of 
trophic modeling using Ecopath, pioneered by Christensen 
and Pauly (1992) and Walters et al. (1997), has empowered 
fisheries managers to examine the intricate trophic 
interactions between exploited and non-exploited functional 
groups within ecosystems. This approach enables a 
comprehensive investigation into the direct and indirect 
impacts of fisheries on all biological components of the 
system, leading to a deeper understanding of system 
productivity (Christensen et al., 2004; Pauly et al., 2002). 

However, according to Walters et al. (1997), Ecopath 
renders only a static representation of the trophic structure in 
an ecosystem. It focuses on answering the question of what 
trophic flows are necessary to aid the recent trophic structure 
as well as align with recorded mortality and growth patterns. 
Consequently, its results cannot be used to address 
hypothetical scenarios or policy changes that could cause 
shifts in trophic interactions. To overcome this limitation, the 
authors introduced Ecosim. The objective of Ecosim was to 
develop a straightforward model for biomass dynamics. This 
modeling approach can provide insights into the potential 
changes in biomass direction across numerous trophic groups 
under gradual experimental policies designed at enhancing 
ecosystem management. Therefore, Ecosim has established 
itself as an invaluable instrument for the design and 
implementation of adaptive management experiments at the 
ecosystem level (Walters et al., 1997). 

In addition to Ecopath and Ecosim, another model 
framework called Ecospace was introduced by Walters et al. 
(1999). Ecospace incorporates spatial dynamics into trophic 

mass-balanced models using Ecopath (Christensen and 
Pauly, 1992) and dynamic simulations from Ecosim (Walters 
et al., 1997). It operates within a two-dimensional grid of 
interconnected cells, incorporating habitat and habitat 
affinities. This spatially explicit model facilitates the evaluation 
of policies, specifically considering the impact of Marine 
Protected Areas (MPAs) within an ecosystem context. 
Ecospace relies on the Ecopath mass-balance approach for 
parameterization. An application example of Ecospace is 
presented, showcasing the effect of an MPA and validation 
using trawl survey data. The results are illustrated through a 
color map depicting biomass patterns on the shelf of Brunei 
Darussalam, Southeast Asia. A significant finding of Ecospace 
is the occurrence of spatial "cascade" effects, where prey 
densities are low in predator-rich areas, such as protected 
areas or regions with high fishing costs. The model also 
highlights that the potential benefits of local protection can be 
diminished by high movement rates and concentrated fishing 
efforts at the edges of MPAs, where prey gradients attract 
predators out of the protected areas. Although Ecospace has 
some limitations, such as the absence of explicit consideration 
for seasonal changes or directed migration, its user-friendly 
interface and informative graphs make it likely to be widely 
adopted. The increasing availability of Ecopath files further 
supports its application.  According to Walters et al. (1999), 
Ecospace can be utilized to generate hypotheses about 
ecosystem function and assess policy choices. Instead of 
providing precise quantitative predictions, the authors view 
Ecospace as a method for "policy screening," helping identify 
policy alternatives that warrant further detailed analysis and 
experimental field testing. Additionally, Walters et al. (1999) 
noted that Ecospace serves as an effective teaching tool, 
facilitating the exploration of trophic and spatial relationships. 
The program interface enables users to sketch topographic 
features, primary productivity areas, habitat types, and 
preferences on a computer screen using a mouse. They can 
then observe the development of spatial biomass patterns 
over time through color-coded density maps. 

Next that we will discuss is EcoTroph, a trophic 
model that focuses on marine ecosystems and assesses the 
impacts of fisheries by considering the distribution of biomass 
or related quantities across continuous trophic levels (TLs) 
(Gascuel, 2005; Gascuel and Pauly, 2009)]. In an EcoTroph 
representation, ecosystem parameters such as biomass, 
production, catch, and fishing mortality are displayed along 
trophic spectra (Gascuel, 2005). The model incorporates 
fractional TLs to account for the fact that marine animals often 
feed on species from multiple TLs (Odum et al., 1975). A key 
advantage of EcoTroph is its ability to provide an overview of 
the entire ecosystem, considering the complete trophic 
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spectrum instead of focusing solely on individual species. 
Comparing ecosystems using EcoTroph is valuable for 
highlighting differences in ecosystem functioning. However, 
there are limitations associated with data availability, potential 
underestimation of overfishing effects in certain TLs, 
estimation of catches, and the level of aggregation of Ecopath 
groups when constructing EcoTroph models (Halouani et al., 
2015). EcoTroph is useful for developing ecosystem-based 
indicators, which are essential for effective ecosystem 
management (Rombouts et al., 2013). It is relevant for 
comparing trophic structures and analyzing trophic flows in 
marine ecosystems from ecological and fisheries 
perspectives, as it does not focus specifically on individual 
species (Gascuel and Pauly, 2009). Additionally, EcoTroph 
shows promise as a tool for exploring different levels of fishing 
pressure and understanding food web properties such as 
sensitivity to fishing, intensity of top-down control, and 
ecosystem stability (Halouani et al., 2015). 

Another trophic model widely employed by ecologists 
is Ecopath with Ecosim (EwE). It is a trophic model frequently 
employed by ecologists, offering a comprehensive 
representation of ecosystems that accounts for the 
complexities of the food web (Christensen et al., 2004; 
Walters et al., 1999). EwE is well-known as desktop software 
designed for the Microsoft Windows platform (Steenbeek et 
al., 2016) and has found applications in ecological studies, 
ecosystem-based management, and environmental impact 
assessments (Christensen and Maclean, 2011; Canadian 
Environmental Assessment Agency, 2015; Link, 2011). The 
EwE modeling approach consists of three interconnected 
routines: Ecopath, Ecosim, and Ecospace (Steenbeek et al., 
2016). It has been utilized in various fields, including the 
analysis of fishing and climate change impacts on 
ecosystems, the understanding of emergent ecosystem 
dynamics, ecosystem-based management, marine 
conservation, and spatial planning. Beyond fishing impact 
assessments, the scientific community employs EwE for a 
wide range of purposes such as providing scientific advice for 
management, investigating conservation issues, and 
evaluating cumulative impacts of environmental and human 
activities on marine food webs, including habitat modification 
and the invasion of alien species (Coll et al., 2015). EwE 
currently stands as the most widely used ecosystem modeling 
platform globally (Ainsworth and Walters, 2015). Over the past 
three decades, the Ecopath approach has evolved into a 
comprehensive modeling suite referred to as "Ecopath with 
Ecosim and Ecospace" or the EwE toolbox (Coll et al., 2015). 

In the Mediterranean Sea, researchers have 
developed numerous ecological models using the Ecopath 
with Ecosim approach (Christensen et al., 2004; Coll and 

Libralato, 2011). These models have been applied in various 
domains, including the assessment of fishing impacts (Coll et 
al., 2006), the comparison of ecosystem structure and 
functioning traits (Hattab et al., 2013; Tsagarakis et al., 2010), 
exploration of management options (Fouzai et al., 2012), 
evaluation of aquaculture impacts (Forestal et al., 2012), 
analysis of environmental effects (Coll et al., 2008; Piroddi et 
al., 2010), and investigation of the effects of invasive species 
on the food web (Daskalov, 2002). 

3. CASE STUDIES IN DIFFERENT AREAS 
USING ECOLOGICAL MODELING TO 
ADDRESS DIFFERENT ECOLOGICAL 
ISSUES 
Numerous studies have utilized ecological models to 

tackle various issues in specific ecosystems, providing 
evidence of the widespread applications of ecological 
modeling worldwide. The following studies presented in this 
paper serve as evidence of ecological modeling applications 
worldwide.  

Corrales et al. (2015) conducted a study in the 
northwestern Mediterranean Sea, focusing on the marine 
continental shelf and slope area from Toulon to Cape La Nao. 
Referred to as the Northwestern Mediterannean model 
(NWM), an ecological model was developed to examine the 
structure and functioning of this region, which encompassed 
previously studied areas like the Gulf of Lions and the 
Southern Catalan Sea. The study expanded the scope to 
cover an area of 45,547 km2, ranging in depths from 0 to 1000 
m. The selection of the study area took into account 
connectivity between regions, shared fish stocks, and fishing 
fleets. To construct the model, the researchers utilized input 
data from local scientific surveys, fishing statistics, published 
stomach content analyses, and empirical equations for 
consumption and production rate estimations. The model 
consisted of 54 functional groups, representing a range of 
organisms from primary producers to top predators. Both 
Spanish and French fishing fleets were included in the model. 
Ecological indicators were employed to analyze the data, and 
the results were compared with outputs from previous 
ecosystem models developed in the Mediterranean Sea and 
the Gulf of Cadiz. The findings of the study indicated that 
trophic flows were primarily associated with detritus, 
phytoplankton, zooplankton, and benthic invertebrates. 
Several keystone groups within the ecosystem were identified, 
including dolphins, benthopelagic cephalopods, large 
demersal fishes from the continental shelf, large pelagic 
fishes, and herbivorous salema fish. The study also confirmed 
a significant and widespread fishing impact throughout the 
food web. The comparative analysis revealed shared 
structural and functional traits among ecosystems, such as the 
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important role of detritus, the dominance of the pelagic fraction 
in terms of flows, and the significance of benthic-pelagic 
coupling. 

Ramírez et al. (2015) conducted a study focusing on 
the effects of a proposed Marine Protected Area (MPA) 
system on fisheries in a biodiversity conservation priority site 
in northern Chile. The authors employed a spatial dynamic 
modeling approach that integrated ecological, social, and 
economic criteria. They developed an Ecospace model 
specifically for the ecological benthic subsystems dominated 
by kelp beds off the Mejillones Peninsula, Chile. The study 
compared changes in fisheries indicators and the spatial 
distribution of fishing effort across five different scenarios. 
These scenarios included a no-MPA baseline scenario and 
four scenarios that incorporated proposed MPA core and 
buffer zones. The scenarios varied in terms of the dispersal 
rates, either high or low, for the species represented in the 
model. Overlay analysis was used to identify the zones and 
fishing grounds that would be impacted by the proposed MPA 
system, and the extent of this impact was assessed. The 
results revealed a significant overlap between the proposed 
MPA site and fishing grounds of high economic importance. 
This included a specific fishing ground where women are 
permitted to work. The study provided insights into the 
potential effects of the MPA system on fisheries and 
highlighted the spatial relationships between the proposed 
MPA and important fishing areas. This overlap raised 
concerns about potential displacement of women without 
alternative livelihood options, leading to possible social 
repercussions within the fishing community. Through the 
spatial food web model of the kelp forest, it was discovered 
that the accumulation of biomass in fished species was highly 
influenced by dispersal rates, especially in scenarios with 
smaller reserves. A noteworthy pattern emerged as fishing 
effort was redistributed at the boundaries of individual MPAs 
and open areas nearer to the port. Analysis of fisheries 
indicators revealed negative impacts in both MPA scenarios, 
including undesirable changes in catch and profits for rockfish 
and kelp exploitation. These findings raised concerns 
regarding the potential adverse consequences of 
implementing the proposed MPA system for the Mejillones 
Peninsula on the fishing community of Constitución Cove. To 
mitigate these potential negative effects on fisheries, the study 
suggested the integration of fisheries management objectives 
with biodiversity conservation in the planning process of the 
Mejillones Peninsula MPA system. By doing so, it may be 
possible to address the concerns of the fishing community and 
garner their support for future MPAs. 

Halouani et al., (2015) utilized the EcoTroph 
modeling approach to examine and characterize the food 

webs of five Mediterranean marine ecosystems. Their 
objective was to investigate the ecosystems' responses to 
different simulated fishing scenarios. By conducting EcoTroph 
simulations, the authors assessed the sensitivity of each 
ecosystem to fishing. In the study, the effects of increasing or 
decreasing fishing mortality rates on both biomass and catch 
per trophic level were simulated across the five ecosystems. 
The results emphasized the substantial impact of high trophic 
level organism depletion in the Mediterranean Sea. 
Furthermore, the research revealed that the fisheries' 
influence, when analyzed at the trophic level scale, varied 
among ecosystems based on their trophic structure and 
exploitation patterns. Significantly, certain simulations 
demonstrated a top-down compensation effect. This effect 
occurred when a decrease in predator biomass resulting from 
fishing had an indirect positive effect on lower trophic levels. 
Through this comparative analysis, it became evident that 
ecosystems exhibiting noticeable top-down controls were less 
vulnerable to fluctuations in fishing mortality in terms of total 
ecosystem biomass. This finding suggested that the presence 
of top-down control can influence system stability. 

In a study conducted by Gribble (2003), a trophic-
based ecosystem model called the GBR-prawn was 
developed for the Great Barrier Reef. This model integrated a 
generalized template of a coral reef ecosystem with data 
collected from comprehensive surveys in the far northern 
region of the reef. The enhanced model included both trawl 
and line fisheries, with particular attention given to the effects 
of trawling on the penaeid prawn community in the lagoon and 
inter-reef habitat. The simulations using the GBR-prawn 
model revealed both positive and negative outcomes of prawn 
trawling and the associated 6:1 ratio of discarded by-catch on 
the Great Barrier Reef ecosystem. Certain species, such as 
endangered sea turtles, suffered negative impacts, while 
scavengers like seabirds experienced benefits. The study also 
highlighted that reducing trawling would come with ecological 
costs, in addition to the apparent advantages, due to the 
intricate nature of the Great Barrier Reef ecosystem and its 
trophic interactions. Another study by Bulman et al. (2014) 
concentrated on Australia, where EwE models have been 
widely utilized to assess the ecosystem effects of fishing. The 
study's key findings underscore the pivotal role of EwE models 
in informing sustainable fisheries management. These 
models, with their widespread application, have provided 
invaluable insights into the ecological consequences of fishing 
practices. They have shed light on how fishing activities 
impact marine ecosystems, including changes in species 
composition, trophic interactions, and ecosystem services. 
The study also highlighted that EwE models have been 
instrumental in supporting sustainable fisheries management 
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by informing decisions related to fishing quotas, conservation 
measures, and ecosystem-based management strategies. 
With some key findings on the effects of fishing practices on 
marine food webs, detrimental effects of bycatch and habitat 
degradation as well as overfishing of important species in 
higher trophic levels that could lead to ecosystem imbalance. 
the study suggests that EwE models have proven to be 
effective tools for assessing and managing the ecosystem 
effects of fishing in Australia. However, the study also notes 
that there are challenges, including uncertainties in model 
parameters and data limitations, which could affect the 
precision of predictions. Despite these challenges, the study 
underscores the importance of EwE models in promoting 
ecosystem-based fisheries management, and it calls for 
continued improvements in data collection, model calibration, 
and cross-disciplinary collaboration to enhance the reliability 
and applicability of these models in the future. 

Bacalso and Wolff (2014) conducted a study in the 
Central Visayas, Philippines, aiming to create a trophic model 
of the shallow Danajon Bank. They employed a mass balance 
approach called Ecopath to depict the system's characteristics 
and its interactions with fisheries. The Ecopath model 
encompassed 37 functional groups and 17 fishing fleet types, 
representing the diverse catches and fishing activities in the 
Danajon Bank. The analysis indicated that the catch primarily 
consisted of fish and invertebrates from lower trophic levels, 
resulting in a relatively low mean trophic level for the fishery. 
The study revealed that the system dynamics were mainly 
influenced by top-down fishing pressure, evident from the low 
biomass and high exploitation levels observed in numerous 
upper trophic level groups, along with the absence of 
significant natural physical disturbances. Through the mixed 
trophic impacts (MTI) analysis, the study shed light on the 
impact of illegal and destructive fishing practices on the 
ecosystem's structure and dynamics. It was discovered that 
the collective annual harvest from illegal fisheries accounted 
for approximately 25% of the entire municipal fisheries catch 
in the area. This emphasized the importance of strengthening 
fisheries law enforcement by local government units to 
address these unlawful activities, as doing so could 
significantly enhance the potential benefits of legal fisheries. 
To construct a trophic system model of the Danajon Bank, the 
researchers utilized Ecopath with Ecosim (version 6.3, 
Christensen et al., 2008). This model represents a balanced 
system where biomass flows are assumed to be in equilibrium 
within each ecological compartment or functional group over 
a specified time period. 

In recent case study conducted by Reimer et al. 
(2022) which took into considerations of incorporating the 
uncertainty in parameter into models. The researchers treated 

the parameters as random variables with distributions, rather 
than fixed quantities. They had introduced these methods with 
a motivating case study of sea ice algal blooms in 
heterogeneous environments comparing Monte Carlo 
methods with polynomial chaos techniques to help understand 
the dynamics of an algal bloom model with random 
parameters. Their results showed that modeling key 
parameters in the algal bloom model as random variables 
changes the timing, intensity and overall productivity of the 
modelled bloom. A promising avenue for the broader inclusion 
of parametric uncertainty in ecological models, leading to 
improved model predictions and synthesis between models 
and data, was provided by the computational efficiency of 
polynomial chaos methods.  

4. CHALLENGES ENCOUNTERED IN 
ECOLOGICAL MODELING 
Models of global climate have gained acceptance to 

the point where their predictions serve as a basis for 
multilateral government agreements with potentially huge 
economic implications (Pittroff and Pedersen, 2005). As the 
urgency to forecast ecosystem responses to global change 
grows, so do the number and complexity of predictive 
ecological models and the value of iterative prediction, both of 
which demand validation and cross-model comparisons. This 
challenges ecologists to provide predictive models that are 
reusable, interoperable, transparent and able to 
accommodate updates to both data and algorithms (Barros et 
al., 2022). The ideal model for supporting environmental 
management decisions should be directly aligned with 
management objectives, provide unbiased predictions of the 
effects of alternative management approaches, offer sufficient 
precision, accurately estimate prediction uncertainty, be 
applicable across different locations and time periods, and be 
easily comprehensible. However, in reality, models often fall 
short of these ideals (Schuwirth et al., 2019). Ecosystems are 
generally so complex that sparse data and knowledge make 
the development of models difficult (Pittroff and Pedersen, 
2005). Evans (2012) mentioned that ecological forecasting 
models inevitably involve significant uncertainty in their 
predictions because there is often considerable uncertainty or 
inaccuracies in parameters in ecological models as cited by 
Reimer et al., (2022). Such variance can propagate to 
downstream models. Overall, the uncertainty present in 
ecological forecasting models emerges from the imprecision 
of biological parameter estimates, the stochastic nature of 
ecological systems, and variations in physical predictions of 
the environment, affecting subsequent biological predictions 
(Evans, 2012). 
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  Furthermore, several factors have been identified 
regarding the limitations and challenges associated with 
ecological modeling: 

1. While ecological models are commonly formulated in 
research projects, their application in practical 
contexts is infrequent (Schuwirth et al., 2019).  

2. Effective communication of scientific findings to 
stakeholders is crucial. Model results should convey 
a clear and easily understandable message. 
Presenting model uncertainty in a comprehensible 
manner can be particularly challenging and requires 
appropriate visual presentation. It is essential to 
interpret model results in light of the specific 
questions the model was designed to address and 
the simplifications and assumptions made during its 
development. It should be acknowledged that no 
model can perfectly replicate the behavior of the 
system being modeled (Schuwirth et al., 2019). One 
challenge for scientists, managers, and stakeholders 
is to appraise how well suited these models are to 
answer questions of scientific or societal relevance, 
that is, to perform, communicate, or access 
transparent evaluations of ecological models 
(Planque et al., 2022). 

3. The utilization of ecosystem modeling in fisheries 
management remains constrained due to two 
primary factors: the absence of explicit requests from 
managers for advice derived from ecosystem 
models, and the failure of modelers to effectively 
convey the significance and applicability of their work 
to management advisors (Coll et al., 2015). 

4. Despite the global acknowledgement of the 
significance of adopting an ecosystem-based 
approach to fisheries management, its 
implementation continues to be insufficient. The 
majority of fisheries regulations still adhere to the 
single-species approach, and only a handful of 
countries such as Europe, Latin America, The 
Mediterranean and North America have established 
formalized scientific advisory systems grounded in 
the ecosystem-based approach (Coll et al., 2015). 

5. Traditional fisheries management relies on 
population dynamics models that assume stable 
ecosystems with constant parameters. However, it is 
now widely recognized that such assumptions are 
seldom valid, as ecosystems are dynamic and 
continuously undergo changes in terms of their 
organization, resilience, vulnerability, and other 
characteristics (Link, 2011). 

6. Environmental and ecological systems inherently 
entail significant uncertainties and exhibit nonlinear 
dynamics (Grêt-Regame et al., 2013; Burkett et al., 
2005). 

7. The stochastic nature of ecological models means 
that a single simulation represents only one random 
outcome among an infinite number of possible 
outcomes. Consequently, a single iteration of a 
stochastic model is inadequate to comprehensively 
characterize a model's prediction (Kennedy, 2019). 

8. Biased input data has the potential to generate 
biased outcomes. Input variables that lack direct 
connections to the system can possess limited 
practical utility for environmental management and 
may produce false predictions based on coincidental 
correlations in the data (Schuwirth et al., 2019). 

9. Neglecting prior knowledge of crucial mechanisms 
can lead to overlooking the dynamic nature of the 
system and the vital feedback loops that exist 
between output variables (Robson, 2014). 

10. Scaling, that is, changing from one scale to another, 
is not always straightforward, and sometimes can 
cause problems due to scale breaks, nonlinearities, 
feedbacks and heterogeneity in such pattern process 
relationships (Snell et al., 2014). Additionally, scaling 
is sometimes not explicit, and confusion in 
terminology adds to scaling-related problems 
(Fritsch et al., 2020). Scaling or process scaling is 
defined as translating information from one scale to 
the other. This review takes the perspective that 
scaling is inherent to modeling and elaborates how 
the scaling approaches that are available can be 
classified into pre-model, in-model and post-model 
scaling methods. This implies that scaling and the 
associated problems are probably more widespread 
than previously thought, since they cover so many 
different areas of modeling. Thus, we recommend 
that ecologists be aware of scaling problems 
especially where models do not explicitly aim at 
scaling (Fritsch et al., 2020).  

 
Modeling is widely used in ecology and its utility 

continues to increase as scientists, managers and policy-
makers face pressure to effectively manage ecosystems and 
meet conservation goals with limited resources (Barros et al., 
2022). While numerous researchers around the world use a 
great variety of models to understand ecological dynamics 
and their responses to disturbances, only a small fraction of 
these models are ever used to inform ecosystem 
management (DeAngelis et al., 2021). These statements 
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imply that ecological modeling faces various challenges, 
including limited practical application, effective communication 
of results, low uptake in fisheries management, inadequate 
implementation of the ecosystem-based approach, reliance 
on simplified assumptions, uncertainties and nonlinear 
dynamics, the need for multiple model runs, the importance of 
unbiased input data, and the consideration of prior knowledge 
and feedback mechanisms. Addressing these factors is 
crucial for enhancing the usefulness and effectiveness of 
ecological models in supporting environmental management 
decisions.   

5. POSSIBLE SOLUTIONS TO ECOLOGICAL 
MODELING CHALLENGES 
Given the urgency of better predictions of 

environmental change, the current slow progress of ecological 
modeling should be motivating and not deterring (Pittroff and 
Pedersen, 2005). Various approaches are being implemented 
to address the challenges associated with ecological 
modeling. Ensuring the quality of input data, output data, and 
results is of utmost importance in enhancing the confidence of 
researchers and managers in model outcomes and 
evaluations (Coll et al., 2015). Effective management 
strategies should consider trophic interactions, environmental 
patterns, and ecosystem dynamics. Understanding how 
ecosystems evolve becomes essential in formulating adaptive 
strategies for sustainable management over time (Arreguín-
Sánchez et al., 2014). Additionally, socio-economic factors 
and impacts should be taken into account when developing 
empirical applications of Ecopath with Ecosim (EwE) to offer 
a comprehensive assessment to the industry, scientific 
community, and society at large (Coll et al., 2015). By avoiding 
common pitfalls, such as implementing management 
strategies that are inappropriate for the area and lead to 
failure, as stated in the study by Toring-Farquerabao et al. 
(2021) involving the deployment of artificial reefs in Iloilo, 
Philippines, we can potentially make a significant positive 
impact. It is essential to be aware of the ten mistakes identified 
by Ainsworth and Walters (2015). Understanding these 
mistakes can help improve the effectiveness of management 
risks. Schuwirth et al. (2019) also outline six requirements to 
enhance the utility of ecological models for management 
support, particularly when justifying decisions to the public. 
These prerequisites encompass the need for a mechanistic 
comprehension of causality, aligning model input and output 
with management decisions, ensuring appropriate temporal 
spatial resolutions, quantifying uncertainties, attaining 
satisfactory predictive performance, and maintaining 
transparent communication. Planque et al. (2022) also 
presented a general protocol designed to guide the reporting 

of model evaluation. The protocol is organised in three major 
parts: the objective(s) of the modeling application, the 
ecological patterns of relevance and the evaluation 
methodology proper, and is termed the OPE (objectives, 
patterns, evaluation) protocol. They have presented the 25 
questions of the OPE protocol which address the many 
aspects of the evaluation process and then apply them to six 
case studies based on a diversity of ecological models. In 
addition to standardising and increasing the transparency of 
the model evaluation process, we find that going through the 
OPE protocol helps modellers to think more deeply about the 
evaluation of their models. From this last point, we suggest 
that it would be highly beneficial for modellers to consider the 
OPE early in the modeling process, in addition to using it as a 
reporting tool and as a reviewing tool. The OPE protocol is 
proposed as a tool to report the evaluation of ecological 
models. 

For the development of a shared understanding and 
the facilitation of knowledge transfer between science and 
practice, collaboration between environmental decision-
makers and ecological modelers is essential (Schuwirth et al., 
2019). Studies indicate the importance of engaging 
stakeholders, particularly decision-makers, in the early stages 
and throughout the process of ecosystem modeling. This 
ensures that the modeling efforts effectively address pertinent 
management objectives and gain the necessary support and 
investment from decision-makers (Coll et al., 2015). Providing 
estimates of model uncertainty alongside expected outcomes 
is essential for environmental managers to accurately interpret 
results and make reliable conclusions. Transparency in 
communicating uncertainty enhances the credibility of 
scientists (Schuwirth et al., 2019). Adhering to the Findability, 
Accessibility, Interoperability, and Reusability (FAIR) 
principles for data management enables models to be easily 
discovered and be used online. Enabling public access to the 
model's source code and documentation fosters verification 
and encourages discussions among peer scientists, 
facilitating ongoing development (Schuwirth et al., 2019). 

Ecological uncertainty can be represented into 
ecological models by treating parameters as random 
variables. It has provided a road map for analyzing such 
models, including introducing tools from modern uncertainty 
quantification such as PC expansions. Applying these 
methods in our case study provides a first step towards 
incorporating small scale heterogeneity in parameter values 
into regional models of ice algal blooms. Consideration of this 
heterogeneity results in changes in estimated bloom 
phenology and intensity, and should not be neglected if we are 
to understand this important component of polar ecology and 
biogeochemistry (Reimer et al., 2022).  
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Finally, to enhance the plausibility of models, 
iterative testing of different management strategies, 
representing various input variables at several spatio-
temporal scales and intensities, can improve the realism and 
performance of ecological models and their results. Thorough 
documentation and clear communication aid in the 
management of unrealistic expectations and build trust in the 
models (Schuwirth et al., 2019). Barros et al. (2022) proposed 
a practical solution to this challenge based on the frequent 
Predictions and Evaluations of Reusable, Freely accessible, 
Interoperable models, built within Continuous workflows that 
are routinely Tested (PERFICT) principles, using a modular 
and integrated framework. We present its general 
implementation across seven common components of 
ecological model applications—(i) the modeling toolkit; (ii) 
data acquisition and treatment; (iii) model parameterisation 
and calibration; (iv) obtaining predictions; (v) model validation; 
(vi) analysing and presenting model outputs; and (vii) testing 
model code—and apply it to two approaches used to predict 
species distributions: (1) a static statistical model, and (2) a 
complex spatiotemporally dynamic model. By linking all 
stages of an ecological modeling exercise, it is possible to 
overcome common challenges faced by ecological modellers, 
such as changing study areas, choosing between different 
modeling approaches, and evaluating the appropriateness of 
the model. This ultimately creates a more equitable and robust 
playing field for both modellers and end users (e.g. 
managers), and contributes to position predictive ecology as 
a central contributor to global change forecasting. The authors 
demonstrated a practical solution to two pervasive problems 
in ecological simulation modeling that can encumber the use 
of large datasets and complex models, hinder scientific 
progress, decrease model transparency, and reduce the 
durability and reusability of ecological simulation models. By 
demonstrating how ecologists can develop applied ecological 
models using transparent and reusable integrated workflows 
and harnessing community contributions, we hope to 
contribute to moving predictive ecology forward in the field of 
global change research and forecasting. Furthermore, in the 
study of DeAngelis et al. (2021), they have searched, 
examined, and documented ‘success stories’ in ecological 
management using ecological modeling from the past. 
Researchers have found that there is not a unique way to 
conduct a research project that is useful in management 
decisions; however, research is more likely to have impact 
when conducted with many stakeholders involved and specific 
to a situation for which data are available. The study came up 
with the same conclusions that communication is key in the 
process: listening closely to stakeholders’ needs and 

explaining in simple terms the scientific tools involved, their 
powers and their limitations. 

 
6. FUTURE DIRECTIONS OF ECOLOGICAL 

MODELING 
The key step in addressing the challenge of 

comprehending the ecological consequences of 
environmental change involves constructing realistic models 
of ecological systems. These models enable accurate 
predictions of the system's state under future changed 
conditions, facilitating a better understanding of the ecological 
consequences (Evans, 2012). The loss of ecosystem services 
due to climate change and coastal development is projected 
to have significant impacts on local economies and 
conservation of natural resources. Consequently, there has 
been an increase in coastal management activities such as 
living shorelines, oyster reef restoration, marsh restoration, 
beach and dune nourishment, and revegetation projects. 
Coastal management decisions are complex and include 
challenging trade-offs. Decision science offers a useful 
framework to address such complex problems (Martin et al. 
2023). Martin et al. (2023) provided a synthesis about how 
decision science can help to integrate research from multiple 
disciplines (physical and life sciences) with management of 
coastal and marine systems. Authors have showed how 
decision science can be used as a framework to combine 
geomorphological and ecological modeling to help inform 
management decisions while considering uncertainty about 
system changes and risk tolerance. Coll et al. (2015) 
emphasized the importance of delivering practical 
management advice for various environmental management 
processes and adapting to global changes, such as climate 
change. To secure the long-term sustainability of the Ecopath 
with Ecosim (EwE) approach, active participation of the 
broader EwE community in initiatives initiated by the Ecopath 
International Research and Development Consortium is 
crucial (Coll et al., 2015). Moreover, simple techniques such 
as Specific, Measurable, Achievable, Relevant, and Time-
bound (SMART) tables combined with an expert elicitation can 
be done in a matter of days (Runge et al., 2020). Using holistic 
and interdisciplinary approaches to management that 
integrate all components of the decision-making process can 
be beneficial to coastal management over the long term as the 
Dauphin study of Martin et al. (2023) have mentioned and also 
noted that complex models are not always necessary, and we 
want to avoid the misconception that decision analysis is 
always time consuming or necessarily involves complex 
models. 

The scientific exploration of aquaculture is also 
gaining significance. A future challenge lies in connecting the 
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EwE approach with meticulous and refined aquaculture 
models. This integration would enhance the representation of 
the ecological impacts of aquaculture and support spatial 
planning for effective management (Coll et al., 2015). 
Furthermore, an inclusive approach should consider 
socioeconomic dynamics and drivers. It is envisioned that 
future integrated approaches will incorporate socioeconomic 
models to better serve society's needs (Coll et al., 2015). 
Nevertheless, the rapid advances in technology, 
geomorphological, and ecological modeling and optimization 
algorithms offer opportunities to integrate disciplines and 
monitoring programs to inform coastal management (Martin et 
al., 2023). Coll et al. (2020) presented an updated version of 
EcoOcean (v2), a spatial-temporal ecosystem modeling 
complex of the global ocean that spans food-web dynamics 
from primary producers to top predators. Advancements 
include an enhanced ability to reproduce spatial-temporal 
ecosystem dynamics by linking species productivity, 
distributions, and trophic interactions to the impacts of climate 
change and worldwide fisheries. The updated modeling 
platform is used to simulate past and future scenarios of 
change, where we quantify the impacts of alternative 
configurations of the ecological model, responses to climate-
change scenarios, and the additional impacts of fishing. 
EcoOcean v2 can contribute to the quantification of 
cumulative impact assessments of multiple stressors and of 
plausible ocean-based solutions to prevent, mitigate and 
adapt to global change. 
 

7. CONCLUSION 
In conclusion, this review underscores the 

importance of aligning ecological models with management 
objectives and ensuring that inputs accurately reflect 
environmental factors. Recognizing the trade-offs inherent in 
modeling complex ecological systems is crucial, considering 
the need to balance specific biological characteristics with 
generalizability. The discussion also highlights the growing 
importance of explicit spatial models in addressing ecological 
interactions and marine policy initiatives, though 
acknowledging the computational challenges they present. 
The caution against excessive focus on modeling intricacies 
in fisheries assessment emphasizes the need for a balanced 
approach, avoiding unnecessary complexity that may impede 
timely and practical analyses for effective fisheries policy 
design and ecosystem management. As researchers navigate 
the intricate networks of ecosystems, a judicious balance 
between model sophistication and practical utility is essential 
for informed decision-making and sustainable environmental 
management. 
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