
 
Journal of Tropical Resources and Sustainable Science 
Website : http://journal.umk.edu.my/index.php/jtrss/ 
eISSN : 2462-2389 
Vol: SI Issue 1, 2025, 162-173 
DOI: https://doi.org/10.47253/jtrss.v13i3.2013 

 

RESEARCH ARTICLE 

162 eISSN Number: 2462-2389  © 2025 UMK Publisher. All rights reserved. 

 

Assessing landslide susceptibility in Bukit Kwong dam, Kelantan, Malaysia using geospatial techniques 
and frequency ratio model  
Nasuha Ishak1*, Wani Sofia Udin1,2, Esra’a Fawaz Alaeed3 and Shadi Hanandeh3  
1Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia  
2Tropical GeoResource & Hazards Research Group, Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, 
Malaysia 
3Department of Civil Engineering, Al-Balqa Applied University, As-Salt 191117, Jordan 
 

ARTICLE HISTORY 
Received: 22 July 2025 
Accepted: 30 October 22025 
Online: 31 December 2025 
 
KEYWORDS 
Landslide susceptibility, 
Unmanned Aerial Vehicles, 
Frequency ratio model, 
Area under curve, 
Malaysia 
 
⌧ * CORRESPONDING 
AUTHOR  
Sr. Gs. Nasuha binti Ishak  
Faculty of Earth Science,  
Universiti Malaysia Kelantan (Jeli 
Campus), 17600 Jeli, Kelantan,  
Malaysia. 
Email: nasuhaishak21@gmail.com 
 

ABSTRACT 
 
Landslides occurring at or near dam structures are among the predominant forms of geological 
hazards responsible for significant loss of life, property damage, and environmental degradation 
worldwide. To understand the risk, this study evaluates the landslide susceptibility in the nearly 
ageing Bukit Kwong Dam where ageing denotes to time-related deterioration occurring fifty years of 
operation using an integrated approach of Unmanned Aerial Vehicles (UAV), Geographic Information 
System (GIS) and frequency ratio model selected due to its simplicity and ability to provide numerical 
measure of the relative importance in the landslide occurrence. The proposed methodology involves 
the preparation of a landslide inventory, generation of multiple thematic maps representing factors 
influencing slope instability, including aspect, slope, plan curvature, profile curvature, elevation, land 
use, distance from river, Normalized Difference Vegetation Index (NDVI), rainfall, and distance from 
road. These thematic layers were subsequently integrated within a GIS environment using the 
frequency ratio technique to produce a Landslide Susceptibility Map (LSM). The LSM delineated five 
susceptibility classes, ranging from very low (48%), low (34%), moderate (12%), high (5%), and very 
high (1%). According to their high frequency values, slope, land use, plan and profile curvatures, and 
distance from river were identified as the most influential predisposing factors contributing to 
landslide occurrence. The performance and accuracy were evaluated using Area Under Curve 
(AUC), yielding a score of 0.85. The outcomes provide useful baseline information to identify 
landslide-prone areas for dam safety evaluations and slope management strategies in the region.  
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1. INTRODUCTION 

Globally, numerous dam failures have been reported, 
both during the construction phase (Celik and Gul, 2021) and 
operation (Shrestha and Kawasaki, 2020). Most dams are 
located within rugged mountainous and gorge regions 
characterized by complex geological settings, highly variable 
material composition, and steeply inclined bank slopes. The 
steep and unstable slopes in such regions often trigger 
landslide-induced surges, which can subsequently cause dam 
overtopping (Dong et al., 2021). Additionally, the slow 
evolution of landslides in the dam area can be triggered by 
excessive rainfall or nearby deforestation and cause debris 
flows (Chang et al., 2022; Fan et al., 2020; Yang et al., 2022; 
Zheng et al., 2021; Zhong et al., 2021; Zhu et al., 2020).  

However, the study of potential landslides within the 
dam area in Malaysia is quite unusual and has not received 
the necessary attention. It is a concern given that the average 
age of dams in Malaysia has exceeded 40 years, and are 

mostly made of earthfill or rockfill materials, which is also 
known as embankment dams (MyDAMS, 2017). The 
embankment dams are structures composed of natural 
materials such as soil, clay, and rockfill which are less 
cohesive and weaker than concrete (Wieland, 2023). These 
materials are more susceptible to internal erosion, saturation, 
and shear failure on slopes (Fan et al., 2021). Rapid 
deposition of these materials caused by landslides can 
potentially block rivers, resulting in flooding and posing a 
significant danger (Zhong et al., 2021). Over time, material 
deterioration, environmental factors, and operational stress 
can affect its performance and stability (Fan et al., 2021; 
Wieland, 2023). A dam is considered ageing after 
approximately fifty years of operation, although large dams in 
harsh environments may experience ageing effects earlier 
(Wieland, 2023). The vulnerability of ageing dams requires 
careful monitoring. Comprehending the dynamic behavior and 
forecasting potential of the hazard chains resulting from 
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landslide failure is important for improving risk reduction and 
emergency preparedness. 

Susceptibility mapping is the key component of 
landslide prediction and risk assessment by defining the 
potential for landslide occurrence with the correlation of 
landslide inventory comprising data on historical landslide 
occurrences as well as causative factors (Moragues et al., 
2024). In general, the causative factors can be further 
categorized into 2 groups: (1) triggering parameters (due to 
environmental factors and human engineering activities) and 
conditioning parameters (due to topographic factors and 
geological factors) (Mersha and Meten, 2020). These factors 
can be obtained from secondary data sources; however, it is 
essential to ensure the acquired data are up to date and at the 
highest possible spatial resolution to enhance the reliability of 
the analysis. In this sense, Unmanned Aerial Vehicles (UAV) 
offer the capability to capture detailed surface information in 
centimeter level spatial resolution, which can be processed to 
derive key inputs such as slope, aspect, land cover, and 
significantly aid in the accuracy of the landslide susceptibility 
map (LSM) (Tempa et al., 2021).) 

LSM can be derived using statistical methods, 
including the frequency ratio model (FRM) (Yuvaraj and Dolui, 
2021; Moragues et al., 2024; Babitha et al., 2022; Das and 
Lepcha, 2019). This method is widely adopted for calculating 
factor weights in Geographic Information System (GIS) based 
analyses due to simpler implementation and less bias 
compared to qualitative methods such as weightage based on 
expert opinion (Asmare, 2023; Thiery et al., 2020). 
Additionally, the influence of each causative factor can be 
determined based on the calculated frequency ratio (FR) 
values associated with each factor class. Model comparison 
for accuracy assessment indicated that LSM using the FRM 
has proven dependable and consistently outperforms other 
models (Das and Lepcha, 2019; Babitha et al., 2022). 

This study primarily aims to develop a landslide 
susceptibility map for Bukit Kwong Dam, Kelantan, Malaysia, 
and to enhance the accuracy by utilizing mainly UAV-derived 
products as the main source of input data for causative 
factors. Detection of regions at risk of landslides within the 
dam allows a better understanding of the actual ground 
conditions and the essential preventive actions to be taken. 

2. MATERIALS AND METHODS 
2.1. Study area 

 The Bukit Kwong Dam, located southwest of Rantau 
Panjang in the Pasir Mas district of Kelantan, serves as the 
study area (Figure 1). Commissioned in 1979, it is a nearly 
ageing embankment dam constructed using earth fill and rip-
rap materials. The dam comprises three principal structures, 
including a gated semi-circular service spillway, main dam 

body, and irrigation intake system. It has a total storage 
capacity of 14.3 million cubic meters and a catchment area 
covering approximately 11 square meters. In accordance with 
International Commission on Large Dams (ICOLD) 
classification standards, Bukit Kwong Dam is categorized as 
a high hazard potential structure. 
 The topography is moderately dissected hilly with 
vegetated valleys and steep, linear ridges adjacent to the 
reservoir embankment. The region is underlain by riverine 
alluvial soils that are vulnerable to slope failure due to their 
loose texture and low compaction. Furthermore, the 
precipitation is significantly influenced by the northeast 
monsoon that typically brings heavy and prolonged rainfall 
during the period of November and March. The intense 
precipitation in the region has strong potential to initiate 
landslides, consistent with observations at Batu Arang dam 
during the 1981 incident (MyDAMS, 2017). 

The study area has experienced localized instability, 
with minor soil slip reported on the downstream slope in 2019. 
Seepage has also been observed occasionally, with 
occurrences being more prominent during the rainy season. 
The elevated seepage discharge can cause pressure on the 
slopes, leading to changes in instability and potential 
landslides. In addition, illegal deforestation was reported in the 
surrounding hilly areas, which may alter surface runoff and 
reduce slope reinforcement provided by vegetation. 
Collectively, these hazard factors heighten the risk of 
landslides, thereby threatening dam safety and the integrity of 
the reservoir.  

2.2 Landslide inventory map  

The map of landslide inventory shows past landslides 
in the area that may contain information such as locations, 
depth of the landslide, volume of the landslide, blocking river, 
and landslide damage (Yuvaraj and Dolui, 2021). This 
information is vital to investigate the mechanism of landslide 
failure by assessing the spatial pattern of landslide 
occurrences and relevant conditioning factors (Dhungana et 
al., 2023). In this study, the identification of landslide locations 
relied on the site inspection report provided by the Department 
of Irrigation and Drainage (DID), Malaysia, in the period of 
2018 to 2024, as well as field observations. The landslides 
were identified in 48 locations (Figure 1), primarily 
characterized by structural cracking as well as soil and rock 
flow movements that occurred after intense rainfall. The 
locations were split into 70% training data to generate LSM 
and 30% testing data for validation through random selection 
using GIS ArcGIS Pro software. The allocation of the training 
dataset and test dataset was selected based on the majority 
covered by literatures (Khanna et al., 2021; Dhungana et al., 
2023; Zhao and Chen, 2019). 
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Figure 1: Shaded relief of the Bukit Kwong dam in Malaysia showing 48 
landslide locations randomly divided into testing and training data. Note: 
Shaded relief was generated using UAV imagery.  

2.3 Landslide causative factors  

 The selection of causative factors was guided by 
reviewing studies with similar general characteristics of the 
study area (e.g. dam site area) (Zhao et al., 2024; Feng et al., 
2025), tropical country (Sholichin et al., 2024), as well as per 
landslide studies in Malaysia (Abubakar et al., 2025; Yusof et 
al., 2024; Selamat et al., 2022). Furthermore, the selection 
was also guided by the accessibility of data for this study area. 
Ten parameters were selected and categorized into three 
main aspects, such as topography factors, environmental 
factors, and human activities factors. The preliminary results 
from a previous study by Ishak and Udin (2024), based on 
UAV-derived Digital Elevation Model (DEM) and orthomosaic, 
at resolution of 9.34 centimeter and 2.34 centimeter, 
respectively served as the primary input for extracting the 
parameters listed in Table 1. Geological factors such as soil 
type and lithology were not considered in the analysis, as 
these characteristics are relatively uniform across the study 
area and therefore do not significantly influence the spatial 
variations in landslide susceptibility (Kincey et al., 2024). The 
Bukit Kwong Dam foundation is primarily composed of highly 
permeable riverine alluvial soils. The underlying lithology is 
predominantly of schist and gneiss of Permian age and 
consists mainly of weak fine-grained rocks such as phyllite, 
slate, and shale. The subordinate lithologies include 

sandstone, schist, limestone, and volcanic rocks from rhyolitic 
to andesitic composition.  

Aspect is an essential topographical factor that 
characterizes the orientation of the slope and determines the 
received degree of solar radiation, which modifies the rock and 
soil moisture, thereby indirectly affecting the slope stability 
(Panchal and Shrivastava, 2022). In this study, aspects were 
classified into 10 classes and resampled using the nearest 
neighbour. Another crucial topographic factor is slope. It can 
be directly associated with landslides, which can cause a 
slope failure (Panchal and Shrivastava, 2022). The slope with 
a higher angle is typically more vulnerable to collapse, which 
is strongly associated with landsliding processes (Dhungana 
et al., 2023). Slope was divided into 6 classes based on 
natural break classification. While the standard classification 
scheme established by the Department of Mineral and 
Geoscience Malaysia for hill land remains useful for standard 
design comparability, the natural break classification helps to 
preserve natural thresholds in heavily skewed topographic 
data and better reflect the local frequency distribution of the 
study area and thereby enhancing the interpretability of model 
outputs (Zhao et al., 2021; Xiao et al., 2025). As topographical 
metrics, plan and profile curvature describe the geomorphic 
structures of the terrain and slope, influencing landslide 
occurrence primarily through their control on erosion and 
surface runoff processes (Tyagi et al., 2022). The plan 
curvature controlled the direction of landslide movement, 
which controls the degree of convergence or divergence of 
landslide materials along the slope (Panchal and Shrivastava, 
2022). Meanwhile, the profile curvature dynamically affected 
the forces acting within a landslide along the slope direction 
(Panchal and Shrivastava, 2022). In the case of both 
curvatures, the classification was made for negative values 
indicating concave surfaces, zero values denote flat areas, 
and positive values correspond to convex surfaces. Lastly, 
elevation was included because in high relief terrain, factors 
like vegetation coverage, rainfall, and human activities are 
highly correlated with elevation, which exposed to the risk of 
landslide occurrence (Asmare, 2023). This factor was derived 
from the DEM and reclassified into 4 classes using bilinear 
interpolation.  

Land use is one of the environmental factors used to 
understand better specific land uses in different regions, 
whether commercial built area, natural forest, vegetation area, 
residential or plantation area (Shirzadi et al., 2019). The land 
use of the area can subsequently change over time due to 
significant implications for ecosystems, climate change, global 
biogeochemical cycles, and human vulnerability. This study 
extracted the land use from the orthomosaic by UAV using a 
supervised maximum likelihood classifier into 6 classes. 
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Rainfall is the most triggering environmental parameter for 
landslide occurrence globally, as it changes with geographical 
variations and climatic conditions that affect the frequency and 
intensity of precipitation in the region (Panchal and 
Shrivastava, 2022). Intense rainfall events elevate pore water 
pressure and affect the soil moisture, thereby reducing slope 
stability, which results in landslides (Asmare, 2023). This 
study used a cubic interpolation between the Bukit Kwong 
rainfall station and the nearest rainfall station from 2017 to 
2024. The rainfall map was classified into 5 classes. Another 
environmental factor is the distance to river as it affects the 
soil moisture accumulated at the lower portions of the slopes, 
leading to saturation and a consequent reduction in slope 
stability (Loche et al., 2022). The Normalized Difference 
Vegetation Index (NDVI) parameter is used to represent the 
growth state and coverage of vegetation, which provides a 
huge influence on the weathering of slope, runoff, and the 
seepage (Tempa et al., 2021). Both the distance to river and 
the NDVI parameters were obtained from the produced 
orthomosaic derived by the UAV. The value of NDVI ranges 
from -1 to +1 and can be figured using Equation 1: 

 

NDVI = (NIR -R)/(NIR+R)             (1) 

where, R means red band in a UAV aerial image and NIR 
means a band near infrared. 
 

Lastly, the distance from the road suggests human 
activity that altered the natural topography terrain and induced 
the slope instability, such as road clear-cutting and 
construction activities (Asmare, 2023). This study used 
orthomosaic as a reference to digitize the road shapefiles and 
used the Euclidean Distance spatial analysis tool in ArcGIS 
Pro to develop the map. 

The thematic maps were rasterized at a 10 
centimeters resolution to correspond with the spatial 
resolution of the UAV products. The horizontal spatial 
reference was set to Geocentric Datum of Malaysia 
(GDM2000) Kelantan Grid (EPSG3385), and heights were 
derived based on the MyGeoid vertical datum. GIS ArcGIS 
software was used for spatial management and data analysis. 

2.4 General methodology  

 This study constructed the methodology in four main 
steps: (1) development of landslide inventory, (2) preparation 
of thematic maps, (3) generation of landslide susceptibility 
map, and (4) validation assessment, as shown in Figure 2. 
The data was mainly derived from the UAV and other sources 
to obtain necessary information, including causative factors 
and inventory (Table 1).  

Table 1: Summary of the data and their sources 
Factors Triggering/conditioning 

parameters Source 

Landslide 
inventory 

 Field observation, Department 
of Irrigation and Drainage (DID), 
Malaysia 

Topography Aspect 
Slope 
Plan curvature,  
Profile curvature,  
Elevation 

UAV-derived DEM 
UAV-derived DEM 
UAV-derived DEM 
UAV-derived DEM 
UAV-derived DEM 

Environmental Land use,  
Distance to river,  
NDVI,  
Rainfall 

UAV-derived Orthomosaic 
UAV-derived Orthomosaic 
UAV-derived Orthomosaic 
Department of Irrigation and 
Drainage (DID), Malaysia 

Human activity Distance to road UAV-derived Orthomosaic 

 

GIS tools were used to classify factor categories and 
quantify their statistical correlation with the spatial distribution 
of historical landslides. The ratio between pixels associated 
with causative factors and pixels corresponding to landslide 
occurrence was obtained using Equation (2) (Sonker and 
Tripathi, 2022).  

Frequency ratio (FR) = 𝑝𝑝/𝑞𝑞
r/s

                             (2) 

where,  
p = number of landslide occurrences within each class of a 
factor 
q = total number of landslide occurrences within the study area 
r = number of pixels in a given factor class where landslides 
have occurred  
s = total number of pixels representing the entire study area 

 

After that, the obtained FR values are normalized 
using the following Equation (3) (Sonker and Tripathi, 2022). 
For each factor, the Prediction Rate (PR) was subsequently 
calculated as per Equation (4) (Moragues et al., 2024).  

 
FRn =  FR

ΣClass FR
                                                                   (3)                                                                     

PR = (FRn max – FRn min)/ (FRn max – FRn min) Min                  (4)               

where, FRn represents the spatial association coefficient 
(relative frequency) between each factor and landslide 
occurrences, and PR denotes the prediction rate. 
 

Finally, the Landslide susceptibility map (LSM) was 
generated by combining the classes of ten factors with their 
relative frequency ratio values. The weighted sum of these ten 
parameters was integrated using the proposed algorithm, and 
the computation was performed as described in Equation 5 
(Moragues et al., 2024) 

LSM = Σ (𝑊𝑊𝑊𝑊 ∗ 𝑃𝑃𝑃𝑃)                                                         (5)                                               
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where, WC represents the Weighting Coefficients of the ten 
parameters, and PR refers to the prediction rate, while LSM 
denotes the Landslide Susceptibility Map. 

Validation of the generated susceptibility map was 
carried out using the Area under the ROC curve (AUC) based 
on the testing dataset. Equation 6 was used to compute the 
ROC curve (Moragues et al., 2024): 

ROC = ΣTP+ Σ𝑇𝑇𝑇𝑇
𝑃𝑃+𝑁𝑁

                                                                 (6)  

where, true positive (TP) are defined as correctly classified 
landslide pixels, true negative (TN) are defined as correctly 
classified non-landslide pixels, and P and N are defined as the 
number of landslide and non-landslide, respectively. 

Figure 2: The workflow of methodology used in this study consisted of four 
main steps: 1) preparation of landslide inventory, 2) development of 
thematic map, 3) generation of landslide susceptibility map, and 4) 
validation assessment. 

3. RESULT AND DISCUSSION 
3.1. Frequency ratio model analysis 

In this study, ten different thematic maps were 
created, such as slope, aspect, plan and profile curvature, 
elevation, land use, distance to river, NDVI, distance to road, 
and rainfall map, as presented in Figure 3. The relationship 
between a landslide causative factor and landslide occurrence 
can be characterized using FRM. The FR values for each 
class of all thematic maps were calculated and disclosed in 
Table 2. An FR value exceeding 1 generally signifies a positive 
association between the respective class and the occurrences 
of landslide (Tempa et al., 2021). Based on the obtained FR 
values (Table 2), each parameter is discussed below. 

(a) Slope. The 48-87° slope class recorded the highest 
FR value (32.29), higher among all classes across 
the evaluated parameters. This indicates that this 
class has the strongest correlation with landslide 
occurrence in the study area. Other classes, such as 
12- 21°, 22-32° and 33-47° have FR values of 3.11, 
2.03, and 2.43 respectively. The lowest correlation is 
0-4° with 0.26 FR value, followed by 5-11° with 0.91. 

(b) Aspect. The most landslide points are in the north, 
followed by the west direction. Meanwhile, in the 
southeast direction, no landslide point is observed. 
The flat (FR = 1.47), east (FR = 0.44), west (FR = 
0.86), south (FR = 1.11), and northwest (FR = 0.97) 
have low to moderate correlation to landslide 
occurrence. The northeast shows the best 
correlation among all with 1.95 FR value. 

(c) Profile curvature. The study area consisted mostly 
of flat surfaces, with 94.15 % of class pixels. The 
concave surface dominantly influenced the landslide 
occurrence of the parameter with 13.19 FR value. 

(d) Plan curvature. Similarly, the flat terrain occupied 
the horizontal curvature, with 96.94%. A high 
correlation is observed for the concave slope with 
13.72 FR value and 6.15 FR value for the convex 
slope. 

(e) Elevation. The lowest correlation is found in high 
relief terrain with 27 - 32 meter class. In the classes 
of 23 - 24 meter and 25 - 26 meter, the FR value is 
0.88 and 1.07 respectively. Meanwhile, the highest 
correlation is < 22 class (FR value = 1.91). This 
shows that landslide occurrence decreases with an 
increase in elevation in the study area. 

(f) Rainfall. All classes in the rainfall parameters are not 
significantly varied and are below 2.0 FR value. The 
highest FR value (1.86) is seen in the 3500 – 3699 
millimeter/year (mm/yr) class, while the lowest (0.38) 
is in the 3900 – 3999 mm/yr class. 

(g) NDVI. The class of 0.26 – 0.38 has the highest 
correlation (FR value = 3.42) between landslide 
occurrence and total area. In second place is -0.03 – 
0.10 class with 1.67 FR value. Zero correlation is 
found in the 0.50 – 0.60 class, which has the highest 
class pixels (46.88%). The 0.11 – 0.25 class and 0.39  
– 0.49 class have the average FR values of 0.84 and 
0.98, respectively.  

(h) Land use. Agriculture has the highest class pixels 
(42.18%) in the study area, but has a low correlation 
to landslide occurrence (FR = 0.07). The built-up 
area scored the highest FR value with 10.35, a huge 
gap with other classes. Forest area showed no 
association with landslide occurrence, while 
shrubland exhibited only a weak correlation (FR 
value = 0.18). Water class is usually river and 
reservoir in the study area, has quite a high 
correlation with landslide occurrence, with 3.02 FR 
value. 
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(i) Distance to river. This parameter exhibited the 
highest FR value (6.14) in the < 5 meter class and 
significantly decreased with an increase in distance 
to river. Beyond 25 meters, no substantial landslide 
occurrence was observed. 

(j) Distance to road. All classes show medium to low 
correlation to landslide occurrence, with the highest 
20 meter class (FR value = 3.23), followed by < 5 
meter (FR value = 3.13), 15 meter (FR value = 2.51), 
10 meter (FR value = 1.26), 25 meter (FR value = 
0.70), and lastly <250 meter (FR value + 0.48). 

 
Table 2: Frequency ratio values of ten landslide causative factors. 

 

Parameters Classes Pixels Pixels (%) a Landslide points Landslide points (%) b Frequency ratio b/a 
Slope (°) 0-4 23802498 68.69 6.00 18.18 0.26 
 5-11 5749158 16.59 5.00 15.15 0.91 
 12-21 2360157 6.81 7.00 21.21 3.11 
 22-32 1552761 4.48 3.00 9.09 2.03 
 33-47 864482 2.49 2.00 6.06 2.43 
 48-87 325176 0.94 10.00 30.30 32.29 
Aspect Flat 2147419 6.20 3.00 9.09 1.47 
 North 6139100 17.72 10.00 30.30 1.71 
 Northeast 2154942 6.22 4.00 12.12 1.95 
 East 2395023 6.91 1.00 3.03 0.44 
 Southeast 2226905 6.43 0.00 0.00 0.00 
 South 2828544 8.16 3.00 9.09 1.11 
 Southwest 4031161 11.63 1.00 3.03 0.26 
 West 7326388 21.14 6.00 18.18 0.86 
 Northwest 5404750 15.60 5.00 15.15 0.97 
Profile Curvature Concave 318671 0.92 4.00 12.12 13.19 

Flat 32655022 94.15 19.00 57.58 0.61 
Convex 1709557 4.93 10.00 30.30 6.15 

Plan Curvature Concave 382985 1.10 5.00 15.15 13.72 
Flat 33623425 96.94 23.00 69.70 0.72 
Convex 676840 1.95 5.00 15.15 7.76 

Elevation (m) < 22 6602683 19.04 12.00 36.36 1.91 
 23-24 11957820 34.48 10.00 30.30 0.88 
 25-26 8881189 25.61 9.00 27.27 1.07 
 27-32 7241558 20.88 2.00 6.06 0.29 
Rainfall (mm/yr) 3500-3699 6230212 17.96 11.00 33.33 1.86 

3700-3799 10931024 31.52 10.00 30.30 0.96 
3800-3899 8302691 23.94 8.00 24.24 1.01 
3900-3999 5490819 15.83 2.00 6.06 0.38 
4000-4400 3728504 10.75 2.00 6.06 0.56 

NDVI -0.03-0.10 3185131 9.09 5.00 15.15 1.67 
 0.11-0.25 3803424 10.85 3.00 9.09 0.84 
 0.26-0.38 6207439 17.72 20.00 60.61 3.42 
 0.39-0.49 5416990 15.46 5.00 15.15 0.98 
 0.50-0.6 16427016 46.88 0.00 0.00 0.00 
Land use Water 1043788 3.01 3.00 9.09 3.02 
 Built-up area 2233168 6.44 22.00 66.67 10.35 
 Barren land 4912811 14.16 6.00 18.18 1.28 
 Forest 6066902 17.49 0.00 0.00 0.00 
 Scrubland 5798379 16.72 1.00 3.03 0.18 
 Agriculture 14628028 42.18 1.00 3.03 0.07 
Distance to river (m) < 5 2053148 5.92 12.00 36.36 6.14 

10 2023903 5.84 3.00 9.09 1.56 
15 1993321 5.75 2.00 6.06 1.05 
20 1929325 5.56 0.00 0.00 0.00 
25 1874821 5.41 2.00 6.06 1.12 
< 250 24808726 71.53 14.00 42.42 0.59 

Distance to road (m) < 5 2697373 7.75 8.00 24.24 3.13 
10 2513975 7.22 3.00 9.09 1.26 
15 2103836 6.04 5.00 15.15 2.51 
20 1631991 4.69 5.00 15.15 3.23 
25 1513212 4.35 1.00 3.03 0.70 
> 250 24344541 69.95 11.00 33.33 0.48 
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Figure 3: Thematic maps for landslide causative factors implicated in the study area. (a) Slope (°) showing steep gradients concentrated along the dam flanks 
and rivers, (b) Aspect showing distinct in slope orientation, (c) Profile curvature predominantly in flat surface, (d) Plan curvature also reflecting mostly flat, (e) 
Elevation (meter) with higher altitude located in the southern and corner area, (f) Rainfall (millimeter/year) decreasing gradually away from the dam, (g) NDVI 
indicating dense vegetation across much of the area, (h) Land use dominated by agricultural land, (i) Distance to river (meter) concentrated near the center 
of study area and (j) Distance to road (meter) showing roads primarily located near the dam. 
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Figure 4: (a) Landslide susceptibility map using FRM in Bukit Kwong Dam. The areas of very low, low, and moderate zones across most of the study area. 
The landslide prone areas are concentrated near hydraulic structures, water bodies, and nearby infrastructures. (b) Percentage distribution of susceptibility 
in each class, with nearly three-quarters of the study area falls within the very low to moderate susceptibility categories, while high and very high zones 
occupied comparatively limited area. 

3.2. Landslide susceptibility map and validation 

The study classified the generated LSM into five 
classes, such as very low, low, moderate, high, and very high 
using natural breaks as illustrated in Figure 4 (a). Nearly 48% 
of the study area was identified as belonging to the very low 
landslide susceptibility (Figure 4b), predominantly covering 
regions characterized by forest and agricultural land use. This 
is further supported by the 0.50-0.60 NDVI class, which 
represents dense vegetation, where no correlation with 
landslide occurrence was identified, indicating the stabilizing 
effect of well-vegetated areas. Dense vegetation can serve as 
a natural buffer, reducing the direct impact of rainfall on slopes 
and thereby mitigating the potential for landslide initiation 
(Huangfu et al., 2024). Areas of low (34%) and moderate 
susceptibility (12%) are found mostly in the upper part of the 

study area, where the elevation is usually low, from 22 to 26 
meters, and lower slope angles (below 21°). The land use for 
these areas is shrubland, water, and some built-up areas such 
as roads. The high (5%) and very high (1%) susceptibility are 
located near the spillway, reservoir bank, river, main canal, 
embankment dam, as well as in proximity to buildings, bridges, 
and roads. A similar pattern has been observed at the Karun-
3 Dam, where elevated susceptibility occurs along the 
riverbanks, lakeshores, dam structures, and adjacent road 
networks (Zandi and Far, 2025).  

In this study, the highest susceptibility (high and very 
high) occurs between 48° to 87° slope angles, built-up land 
use, concave profile and plan curvature area, proximity to the 
river (< 5 meters), and to a lesser extent, areas located within 
20 meters of a road. Oliveira et al. (2024) reported that slopes 

b) Percentage of Susceptibility Classes (%) 
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exceeding 45° in hilly terrain are highly susceptible to 
landslide initiation, particularly combined with weak or 
weathered lithologies. In Peninsular Malaysia, 27% of 37 
documented landslide cases were triggered in sedimentary 
rock formations such as limestone and shale (Maturidi et al., 
2021). Steep gradients in the present study could exert greater 
force on unconsolidated alluvial underlain by weathered schist 
and limestone that promote downslope transport of loose 
materials, resulting in the accumulation of mixed rock and soil 
deposits. This explains the frequent occurrences of such 
deposits near the sump area. Furthermore, the influence of 
concave curvature may also facilitate additional material 
accumulation. Slope stability is critically influenced by 
curvature, as the accumulation of water and loose materials is 
promoted by concave structures, increasing pressure of pore 
water and reducing shear strength, thereby making slopes 
more susceptible to failure (Moragues et al., 2024). Similarly, 
in other studies, very highly susceptible zones are commonly 
associated with slopes exceeding 30° (Moragues et al., 2024; 
Ngo et al., 2021; Hakim et al., 2022; Asmare, 2023; Sonker 
and Tripathi, 2022), urban areas where land disturbance is 
pronounced (Thein et al., 2023; Ngo et al., 2021), concave 
curvatures (Selamat et al., 2022; Dam et al., 2022), as well as 
distance within 300 meter of road and river (Sonker and 
Tripathi,  2022; Asmare, 2023). 

 The PR value was calculated to describe the relative 
weight or influence of each causative factor on the landslide 
occurrence based on FR values (Moragues et al., 2024). 
Analysis of the PR values for each weighted factor 
demonstrates that slope (4.017), land use (3.572), profile 
curvature (3.246), distance to river (3.021), and plan curvature 
(3.014) have the highest weight as shown in Figure 5. These 
findings imply that topographic form and environmental factors 
exert stronger spatial control on slope instability and have 
dominantly shaped the LSM model, as evidenced by their 
cumulative FR values in the study. Notably, slope consistently 
ranks as the most significant factor in LSM (Shano et al., 2021; 
Moragues et al., 2024; Boukhres et al., 2023). Land use also 
plays a critical role in slope stabilization through the reinforcing 
effects of root systems (Ngo et al., 2021). Surface cover and 
vegetation density are determined by the type of land use, 
which in turn modifies surface hydrology and soil properties, 
thereby affecting the likelihood of landslides (Xiao et al., 
2025). Slopes that remain unaffected by landslides are 
primarily at higher elevations (above 25 meters) within the 
northeast and southwest oriented valley corners, where dense 
forest cover dominates. The presence of a dense vegetation 
canopy serves as natural protective barrier from the direct 
impact of rainfall on the surface of the soil. This relationship is 
evident by moderate PR values of 2.550 for NDVI and 2.012 

for elevation, which suggest that vegetation cover and 
elevation provide stabilizing effects against landslide 
occurrence in the study area. In addition, profile and plan 
curvatures also influence slope response to instability. 
Concave profile curvatures enhance water concentration 
along the slope, while concave plan curvature facilitates 
sediment accumulation with deposits commonly observed 
along the valley bottoms where landslides frequently initiate 
(Lin et al., 2021; Selamat et al., 2022; Moragues et al., 2024). 

In other high-altitude studies, such as Choke 
Mountain (Asmare, 2023), Sikkim Himalaya (Sonker and 
Tripathi, 2022), Three Gorges Reservoir (Zhou et al., 2025), 
and Karaj Dam (Asadi Nalivan et al., 2024), the main landslide 
predisposing factors are distance to rivers, distance to road, 
and slope. Here, the river occupies the central valley bottom, 
where high and very high susceptibility zones are 
concentrated. Occasional seepage along the riverbanks near 
the downstream area may have increased soil saturation 
levels due to elevated moisture content. Fluctuation of water 
levels and increased flow velocities, especially during intense 
rainfall, may reduce shear strength in soils, promoting slope 
failure. In Malaysia, rainfall was often identified as the most 
triggering factor, such as in Langat River Basin (Selamat et 
al., 2022), Muda River Basin (Abubakar et al., 2025), and 
Penang Island (Yusof et al., 2024), as well as in a similar 
tropical climate, such as Konto Watershed, Indonesia 
(Sholichin et al., 2024). Interestingly, rainfall (PR value = 
1.587) does not appear to play a major role in triggering 
landslides in this context, possibly due to nearly uniform 
precipitation distribution in the study area. Moreover, in 
detailed or small-scale susceptibility studies (e.g. map scale 
finer than 1:500), the variation of rainfall thresholds is often 
minimal, reducing the relative influence compared to 
geomorphological and geological factors (Maturidi et al., 
2021). Meanwhile, the lowest PR weights were observed for 
distance to road and aspect with 1.256 and 1.00, respectively, 
indicating minor significance on the number of landslides 
occurrences. This may be attributed to the absence of active 
constructions nearby that could alter natural geology, 
drainage patterns, or impose additional loads affecting soil 
stability (Moragues et al., 2024). Moreover, the roads in the 
study area are generally service roads, small and located at a 
considerable distance from the slopes. Aspect exhibited a low 
influence, likely because the slope orientations in this study do 
not significantly vary in solar radiation, moisture retention, and 
vegetation density that could affect the instability of the slope 
(Saranaathan et al., 2021). 
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The accuracy of the LSM model was assessed using 
the AUC derived from the ROC curve. The curve measures 
the capability of the model to accurately distinguish between 
true positives and negatives cases within the testing dataset. 
The predictive performance of the model is reflected by the 
AUC value, which ranges from 0 to 1, with higher accuracy 
indicated by values closer to 1. Specifically, an AUC of 1.0 
represents a perfect model, 0.90-0.99 denotes excellent 
performance, 0.8-0.89 indicates good model, 7-0.79 suggests 
fair performance, 0.51-0.69 implies poor performance, while 
values of 0.5 or below indicates no predictive ability (Boukhres 
et al., 2023; Das and Lepcha, 2019; Shano et al., 2021; 
Moragues et al., 2024).  

Figure 5: The PR value indicating the weight of the individual factor in the 
LSM model, showing the slope as the dominant predictor, with land use, 
profile curvature, distance to river, and plan curvature also contributing 
notably. 

 
Figure 6: FRM model evaluation performance from the ROC curve showing 
an estimated model accuracy of about 85%. 

The successive rate of FRM in this study was 0.85 
(Figure 6), which is considered a good test and shows a high 
predictive landslide occurrence as reported by Mallick et al. 

(2021). Other landslide susceptibility studies (Ngo et al., 2020; 
Sonker and Tripathi, 2022; Asmare, 2023) reported 
comparable results, whereas slightly lower performance was 
reported by Moragues et al. (2024) and Hakim et al. (2021). 

4. CONCLUSION 
The susceptibility map in this study is the result of a 

combination relationship between ten selected causative 
factors: aspect, slope, elevation, profile, and plan curvature, 
rainfall, NDVI, land use, distance to river and road using the 
frequency ratio model. The UAV based data acquisition 
contributed significantly to the successful extraction of 
parameters for the landslide susceptibility map. The study 
shows that landslide susceptibility is dominated by very low to 
moderate landslide susceptibility. Only approximately 6% of 
the area was identified as part of high to very high 
susceptibility categories, indicating limited zones with 
significant landslide risk. These susceptible areas are 
primarily situated in built-up areas, on steeper slopes (48 – 
87°), concave profile and plan curvature, and a distance less 
than 5 meters to the river. The strongest predictors in the study 
area, according to the predictive values are slope, land use, 
profile and plan curvatures, and distance to river. The 
performance of the landslide susceptibility map is considered 
a good test with an accuracy of 0.85. The derived results of 
this study may serve as an important reference for local 
authorities in decision making process and for researchers 
interested in identifying influential factors in similar study 
areas within Malaysia. 
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