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1. INTRODUCTION mostly made of earthfill or rockfill materials, which is also
known as embankment dams (MyDAMS, 2017). The
embankment dams are structures composed of natural
materials such as soil, clay, and rockfill which are less
cohesive and weaker than concrete (Wieland, 2023). These
materials are more susceptible to internal erosion, saturation,
and shear failure on slopes (Fan et al., 2021). Rapid
deposition of these materials caused by landslides can
potentially block rivers, resulting in flooding and posing a
significant danger (Zhong et al., 2021). Over time, material
deterioration, environmental factors, and operational stress
can affect its performance and stability (Fan et al., 2021;
Wieland, 2023). A dam is considered ageing after
approximately fifty years of operation, although large dams in
harsh environments may experience ageing effects earlier
(Wieland, 2023). The vulnerability of ageing dams requires
careful monitoring. Comprehending the dynamic behavior and
forecasting potential of the hazard chains resulting from

Globally, numerous dam failures have been reported,
both during the construction phase (Celik and Gul, 2021) and
operation (Shrestha and Kawasaki, 2020). Most dams are
located within rugged mountainous and gorge regions
characterized by complex geological settings, highly variable
material composition, and steeply inclined bank slopes. The
steep and unstable slopes in such regions often trigger
landslide-induced surges, which can subsequently cause dam
overtopping (Dong et al., 2021). Additionally, the slow
evolution of landslides in the dam area can be triggered by
excessive rainfall or nearby deforestation and cause debris
flows (Chang et al., 2022; Fan et al., 2020; Yang et al., 2022;
Zheng et al., 2021; Zhong et al., 2021; Zhu et al., 2020).

However, the study of potential landslides within the
dam area in Malaysia is quite unusual and has not received
the necessary attention. It is a concern given that the average
age of dams in Malaysia has exceeded 40 years, and are
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landslide failure is important for improving risk reduction and
emergency preparedness.

Susceptibility mapping is the key component of
landslide prediction and risk assessment by defining the
potential for landslide occurrence with the correlation of
landslide inventory comprising data on historical landslide
occurrences as well as causative factors (Moragues et al.,
2024). In general, the causative factors can be further
categorized into 2 groups: (1) triggering parameters (due to
environmental factors and human engineering activities) and
conditioning parameters (due to topographic factors and
geological factors) (Mersha and Meten, 2020). These factors
can be obtained from secondary data sources; however, it is
essential to ensure the acquired data are up to date and at the
highest possible spatial resolution to enhance the reliability of
the analysis. In this sense, Unmanned Aerial Vehicles (UAV)
offer the capability to capture detailed surface information in
centimeter level spatial resolution, which can be processed to
derive key inputs such as slope, aspect, land cover, and
significantly aid in the accuracy of the landslide susceptibility
map (LSM) (Tempa et al., 2021).)

LSM can be derived using statistical methods,
including the frequency ratio model (FRM) (Yuvaraj and Dolui,
2021; Moragues et al., 2024; Babitha et al., 2022; Das and
Lepcha, 2019). This method is widely adopted for calculating
factor weights in Geographic Information System (GIS) based
analyses due to simpler implementation and less bias
compared to qualitative methods such as weightage based on
expert opinion (Asmare, 2023; Thiery et al., 2020).
Additionally, the influence of each causative factor can be
determined based on the calculated frequency ratio (FR)
values associated with each factor class. Model comparison
for accuracy assessment indicated that LSM using the FRM
has proven dependable and consistently outperforms other
models (Das and Lepcha, 2019; Babitha et al., 2022).

This study primarily aims to develop a landslide
susceptibility map for Bukit Kwong Dam, Kelantan, Malaysia,
and to enhance the accuracy by utilizing mainly UAV-derived
products as the main source of input data for causative
factors. Detection of regions at risk of landslides within the
dam allows a better understanding of the actual ground
conditions and the essential preventive actions to be taken.

2, MATERIALS AND METHODS
21. Study area

The Bukit Kwong Dam, located southwest of Rantau
Panjang in the Pasir Mas district of Kelantan, serves as the
study area (Figure 1). Commissioned in 1979, it is a nearly
ageing embankment dam constructed using earth fill and rip-
rap materials. The dam comprises three principal structures,
including a gated semi-circular service spillway, main dam

body, and irrigation intake system. It has a total storage
capacity of 14.3 million cubic meters and a catchment area
covering approximately 11 square meters. In accordance with
International Commission on Large Dams (ICOLD)
classification standards, Bukit Kwong Dam is categorized as
a high hazard potential structure.

The topography is moderately dissected hilly with
vegetated valleys and steep, linear ridges adjacent to the
reservoir embankment. The region is underlain by riverine
alluvial soils that are vulnerable to slope failure due to their
loose texture and low compaction. Furthermore, the
precipitation is significantly influenced by the northeast
monsoon that typically brings heavy and prolonged rainfall
during the period of November and March. The intense
precipitation in the region has strong potential to initiate
landslides, consistent with observations at Batu Arang dam
during the 1981 incident (MyDAMS, 2017).

The study area has experienced localized instability,
with minor soil slip reported on the downstream slope in 2019.
Seepage has also been observed occasionally, with
occurrences being more prominent during the rainy season.
The elevated seepage discharge can cause pressure on the
slopes, leading to changes in instability and potential
landslides. In addition, illegal deforestation was reported in the
surrounding hilly areas, which may alter surface runoff and
reduce slope reinforcement provided by vegetation.
Collectively, these hazard factors heighten the risk of
landslides, thereby threatening dam safety and the integrity of
the reservoir.

2.2 Landslide inventory map

The map of landslide inventory shows past landslides
in the area that may contain information such as locations,
depth of the landslide, volume of the landslide, blocking river,
and landslide damage (Yuvaraj and Dolui, 2021). This
information is vital to investigate the mechanism of landslide
failure by assessing the spatial pattern of landslide
occurrences and relevant conditioning factors (Dhungana et
al., 2023). In this study, the identification of landslide locations
relied on the site inspection report provided by the Department
of Irrigation and Drainage (DID), Malaysia, in the period of
2018 to 2024, as well as field observations. The landslides
were identified in 48 locations (Figure 1), primarily
characterized by structural cracking as well as soil and rock
flow movements that occurred after intense rainfall. The
locations were split into 70% training data to generate LSM
and 30% testing data for validation through random selection
using GIS ArcGIS Pro software. The allocation of the training
dataset and test dataset was selected based on the majority
covered by literatures (Khanna et al., 2021; Dhungana et al.,
2023; Zhao and Chen, 2019).
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Figure 1: Shaded relief of the Bukit Kwong dam in Malaysia showing 48
landslide locations randomly divided into testing and training data. Note:
Shaded relief was generated using UAV imagery.

2.3 Landslide causative factors

The selection of causative factors was guided by
reviewing studies with similar general characteristics of the
study area (e.g. dam site area) (Zhao et al., 2024; Feng et al.,
2025), tropical country (Sholichin et al., 2024), as well as per
landslide studies in Malaysia (Abubakar et al., 2025; Yusof et
al., 2024; Selamat et al., 2022). Furthermore, the selection
was also guided by the accessibility of data for this study area.
Ten parameters were selected and categorized into three
main aspects, such as topography factors, environmental
factors, and human activities factors. The preliminary results
from a previous study by Ishak and Udin (2024), based on
UAV-derived Digital Elevation Model (DEM) and orthomosaic,
at resolution of 9.34 centimeter and 2.34 centimeter,
respectively served as the primary input for extracting the
parameters listed in Table 1. Geological factors such as soil
type and lithology were not considered in the analysis, as
these characteristics are relatively uniform across the study
area and therefore do not significantly influence the spatial
variations in landslide susceptibility (Kincey et al., 2024). The
Bukit Kwong Dam foundation is primarily composed of highly
permeable riverine alluvial soils. The underlying lithology is
predominantly of schist and gneiss of Permian age and
consists mainly of weak fine-grained rocks such as phyllite,
slate, and shale. The subordinate lithologies include

sandstone, schist, limestone, and volcanic rocks from rhyolitic
to andesitic composition.

Aspect is an essential topographical factor that
characterizes the orientation of the slope and determines the
received degree of solar radiation, which modifies the rock and
soil moisture, thereby indirectly affecting the slope stability
(Panchal and Shrivastava, 2022). In this study, aspects were
classified into 10 classes and resampled using the nearest
neighbour. Another crucial topographic factor is slope. It can
be directly associated with landslides, which can cause a
slope failure (Panchal and Shrivastava, 2022). The slope with
a higher angle is typically more vulnerable to collapse, which
is strongly associated with landsliding processes (Dhungana
et al., 2023). Slope was divided into 6 classes based on
natural break classification. While the standard classification
scheme established by the Department of Mineral and
Geoscience Malaysia for hill land remains useful for standard
design comparability, the natural break classification helps to
preserve natural thresholds in heavily skewed topographic
data and better reflect the local frequency distribution of the
study area and thereby enhancing the interpretability of model
outputs (Zhao et al., 2021; Xiao et al., 2025). As topographical
metrics, plan and profile curvature describe the geomorphic
structures of the terrain and slope, influencing landslide
occurrence primarily through their control on erosion and
surface runoff processes (Tyagi et al., 2022). The plan
curvature controlled the direction of landslide movement,
which controls the degree of convergence or divergence of
landslide materials along the slope (Panchal and Shrivastava,
2022). Meanwhile, the profile curvature dynamically affected
the forces acting within a landslide along the slope direction
(Panchal and Shrivastava, 2022). In the case of both
curvatures, the classification was made for negative values
indicating concave surfaces, zero values denote flat areas,
and positive values correspond to convex surfaces. Lastly,
elevation was included because in high relief terrain, factors
like vegetation coverage, rainfall, and human activities are
highly correlated with elevation, which exposed to the risk of
landslide occurrence (Asmare, 2023). This factor was derived
from the DEM and reclassified into 4 classes using bilinear
interpolation.

Land use is one of the environmental factors used to
understand better specific land uses in different regions,
whether commercial built area, natural forest, vegetation area,
residential or plantation area (Shirzadi et al., 2019). The land
use of the area can subsequently change over time due to
significant implications for ecosystems, climate change, global
biogeochemical cycles, and human vulnerability. This study
extracted the land use from the orthomosaic by UAV using a
supervised maximum likelihood classifier into 6 classes.
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Rainfall is the most triggering environmental parameter for
landslide occurrence globally, as it changes with geographical
variations and climatic conditions that affect the frequency and
intensity of precipitation in the region (Panchal and
Shrivastava, 2022). Intense rainfall events elevate pore water
pressure and affect the soil moisture, thereby reducing slope
stability, which results in landslides (Asmare, 2023). This
study used a cubic interpolation between the Bukit Kwong
rainfall station and the nearest rainfall station from 2017 to
2024. The rainfall map was classified into 5 classes. Another
environmental factor is the distance to river as it affects the
soil moisture accumulated at the lower portions of the slopes,
leading to saturation and a consequent reduction in slope
stability (Loche et al., 2022). The Normalized Difference
Vegetation Index (NDVI) parameter is used to represent the
growth state and coverage of vegetation, which provides a
huge influence on the weathering of slope, runoff, and the
seepage (Tempa et al., 2021). Both the distance to river and
the NDVI parameters were obtained from the produced
orthomosaic derived by the UAV. The value of NDVI ranges
from -1 to +1 and can be figured using Equation 1:

NDVI = (NIR -R)/(NIR+R) (1)

where, R means red band in a UAV aerial image and NIR
means a band near infrared.

Lastly, the distance from the road suggests human
activity that altered the natural topography terrain and induced
the slope instability, such as road clear-cutting and
construction activities (Asmare, 2023). This study used
orthomosaic as a reference to digitize the road shapefiles and
used the Euclidean Distance spatial analysis tool in ArcGIS
Pro to develop the map.

The thematic maps were rasterized at a 10
centimeters resolution to correspond with the spatial
resolution of the UAV products. The horizontal spatial
reference was set to Geocentric Datum of Malaysia
(GDM2000) Kelantan Grid (EPSG3385), and heights were
derived based on the MyGeoid vertical datum. GIS ArcGIS
software was used for spatial management and data analysis.

24 General methodology

This study constructed the methodology in four main
steps: (1) development of landslide inventory, (2) preparation
of thematic maps, (3) generation of landslide susceptibility
map, and (4) validation assessment, as shown in Figure 2.
The data was mainly derived from the UAV and other sources
to obtain necessary information, including causative factors
and inventory (Table 1).

Table 1: Summary of the data and their sources
Triggering/conditioning

Factors Source
parameters
Landslide Field observation, Department
inventory of Irrigation and Drainage (DID),
Malaysia
Topography Aspect UAV-derived DEM
Slope UAV-derived DEM
Plan curvature, UAV-derived DEM
Profile curvature, UAV-derived DEM
Elevation UAV-derived DEM
Environmental Land use, UAV-derived Orthomosaic
Distance to river, UAV-derived Orthomosaic
NDVI, UAV-derived Orthomosaic

Rainfall Department of lIrrigation and

Drainage (DID), Malaysia
UAV-derived Orthomosaic

Human activity Distance to road

GIS tools were used to classify factor categories and
quantify their statistical correlation with the spatial distribution
of historical landslides. The ratio between pixels associated
with causative factors and pixels corresponding to landslide
occurrence was obtained using Equation (2) (Sonker and
Tripathi, 2022).

Frequency ratio (FR) = /s (2)

_p/q
S

where,

p = number of landslide occurrences within each class of a

factor

q = total number of landslide occurrences within the study area

r = number of pixels in a given factor class where landslides

have occurred

s = total number of pixels representing the entire study area

After that, the obtained FR values are normalized
using the following Equation (3) (Sonker and Tripathi, 2022).
For each factor, the Prediction Rate (PR) was subsequently
calculated as per Equation (4) (Moragues et al., 2024).

_ FR
FRn = XClass FR (3)
PR = (FRn max — FRn min)/ (FRn max — FRn min) M|n (4)

where, FR, represents the spatial association coefficient
(relative frequency) between each factor and landslide
occurrences, and PR denotes the prediction rate.

Finally, the Landslide susceptibility map (LSM) was
generated by combining the classes of ten factors with their
relative frequency ratio values. The weighted sum of these ten
parameters was integrated using the proposed algorithm, and
the computation was performed as described in Equation 5
(Moragues et al., 2024)

LSM =3 (WC * PR) (5)
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where, WC represents the Weighting Coefficients of the ten
parameters, and PR refers to the prediction rate, while LSM
denotes the Landslide Susceptibility Map.

Validation of the generated susceptibility map was
carried out using the Area under the ROC curve (AUC) based
on the testing dataset. Equation 6 was used to compute the
ROC curve (Moragues et al., 2024):

_ ZTP+ XTN

ROC = v (6)
where, true positive (TP) are defined as correctly classified
landslide pixels, true negative (TN) are defined as correctly
classified non-landslide pixels, and P and N are defined as the
number of landslide and non-landslide, respectively.
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Figure 2: The workflow of methodology used in this study consisted of four
main steps: 1) preparation of landslide inventory, 2) development of
thematic map, 3) generation of landslide susceptibility map, and 4)
validation assessment.

3. RESULT AND DISCUSSION

3.1. Frequency ratio model analysis

In this study, ten different thematic maps were
created, such as slope, aspect, plan and profile curvature,
elevation, land use, distance to river, NDVI, distance to road,
and rainfall map, as presented in Figure 3. The relationship
between a landslide causative factor and landslide occurrence
can be characterized using FRM. The FR values for each
class of all thematic maps were calculated and disclosed in
Table 2. An FR value exceeding 1 generally signifies a positive
association between the respective class and the occurrences
of landslide (Tempa et al., 2021). Based on the obtained FR
values (Table 2), each parameter is discussed below.

(a) Slope. The 48-87° slope class recorded the highest
FR value (32.29), higher among all classes across
the evaluated parameters. This indicates that this
class has the strongest correlation with landslide
occurrence in the study area. Other classes, such as
12- 21°, 22-32° and 33-47° have FR values of 3.11,
2.03, and 2.43 respectively. The lowest correlation is
0-4° with 0.26 FR value, followed by 5-11° with 0.91.

(b) Aspect. The most landslide points are in the north,
followed by the west direction. Meanwhile, in the
southeast direction, no landslide point is observed.
The flat (FR = 1.47), east (FR = 0.44), west (FR =
0.86), south (FR = 1.11), and northwest (FR = 0.97)
have low to moderate correlation to landslide
occurrence. The northeast shows the best
correlation among all with 1.95 FR value.

(c) Profile curvature. The study area consisted mostly
of flat surfaces, with 94.15 % of class pixels. The
concave surface dominantly influenced the landslide
occurrence of the parameter with 13.19 FR value.

(d) Plan curvature. Similarly, the flat terrain occupied
the horizontal curvature, with 96.94%. A high
correlation is observed for the concave slope with
13.72 FR value and 6.15 FR value for the convex
slope.

(e) Elevation. The lowest correlation is found in high
relief terrain with 27 - 32 meter class. In the classes
of 23 - 24 meter and 25 - 26 meter, the FR value is
0.88 and 1.07 respectively. Meanwhile, the highest
correlation is < 22 class (FR value = 1.91). This
shows that landslide occurrence decreases with an
increase in elevation in the study area.

() Rainfall. All classes in the rainfall parameters are not
significantly varied and are below 2.0 FR value. The
highest FR value (1.86) is seen in the 3500 — 3699
millimeter/year (mm/yr) class, while the lowest (0.38)
is in the 3900 — 3999 mm/yr class.

(9) NDVI. The class of 0.26 — 0.38 has the highest
correlation (FR value = 3.42) between landslide
occurrence and total area. In second place is -0.03 -
0.10 class with 1.67 FR value. Zero correlation is
found in the 0.50 — 0.60 class, which has the highest
class pixels (46.88%). The 0.11-0.25 class and 0.39
—0.49 class have the average FR values of 0.84 and
0.98, respectively.

(h) Land use. Agriculture has the highest class pixels
(42.18%) in the study area, but has a low correlation
to landslide occurrence (FR = 0.07). The built-up
area scored the highest FR value with 10.35, a huge
gap with other classes. Forest area showed no
association with landslide occurrence, while
shrubland exhibited only a weak correlation (FR
value = 0.18). Water class is usually river and
reservoir in the study area, has quite a high
correlation with landslide occurrence, with 3.02 FR
value.
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() Distance to river. This parameter exhibited the () Distance to road. All classes show medium to low
highest FR value (6.14) in the < 5 meter class and correlation to landslide occurrence, with the highest
significantly decreased with an increase in distance 20 meter class (FR value = 3.23), followed by < 5
to river. Beyond 25 meters, no substantial landslide meter (FR value = 3.13), 15 meter (FR value = 2.51),
occurrence was observed. 10 meter (FR value = 1.26), 25 meter (FR value =

0.70), and lastly <250 meter (FR value + 0.48).

Table 2: Frequency ratio values of ten landslide causative factors.

Parameters Classes Pixels Pixels (%) Landslide points  Landslide points (%)® Frequency ratio b
Slope (°) 0-4 23802498 68.69 6.00 18.18 0.26
5-11 5749158 16.59 5.00 15.15 0.91
12-21 2360157 6.81 7.00 21.21 3.11
22-32 1552761 4.48 3.00 9.09 2.03
33-47 864482 249 2.00 6.06 243
48-87 325176 0.94 10.00 30.30 32.29
Aspect Flat 2147419 6.20 3.00 9.09 1.47
North 6139100 17.72 10.00 30.30 1.71
Northeast 2154942 6.22 4.00 1212 1.95
East 2395023 6.91 1.00 3.03 0.44
Southeast 2226905 6.43 0.00 0.00 0.00
South 2828544 8.16 3.00 9.09 1.11
Southwest 4031161 11.63 1.00 3.03 0.26
West 7326388 21.14 6.00 18.18 0.86
Northwest 5404750 15.60 5.00 15.15 0.97
Profile Curvature Concave 318671 0.92 4.00 12.12 13.19
Flat 32655022 94.15 19.00 57.58 0.61
Convex 1709557 493 10.00 30.30 6.15
Plan Curvature Concave 382985 1.10 5.00 15.15 13.72
Flat 33623425 96.94 23.00 69.70 0.72
Convex 676840 1.95 5.00 15.15 7.76
Elevation (m) <22 6602683 19.04 12.00 36.36 1.91
23-24 11957820 34.48 10.00 30.30 0.88
25-26 8881189 25.61 9.00 27.27 1.07
27-32 7241558 20.88 2.00 6.06 0.29
Rainfall (mm/yr) 3500-3699 6230212 17.96 11.00 33.33 1.86
3700-3799 10931024 31.52 10.00 30.30 0.96
3800-3899 8302691 23.94 8.00 24.24 1.01
3900-3999 5490819 15.83 2.00 6.06 0.38
4000-4400 3728504 10.75 2.00 6.06 0.56
NDVI -0.03-0.10 3185131 9.09 5.00 15.15 1.67
0.11-0.25 3803424 10.85 3.00 9.09 0.84
0.26-0.38 6207439 17.72 20.00 60.61 342
0.39-0.49 5416990 15.46 5.00 15.15 0.98
0.50-0.6 16427016 46.88 0.00 0.00 0.00
Land use Water 1043788 3.01 3.00 9.09 3.02
Built-up area 2233168 6.44 22.00 66.67 10.35
Barren land 4912811 14.16 6.00 18.18 1.28
Forest 6066902 17.49 0.00 0.00 0.00
Scrubland 5798379 16.72 1.00 3.03 0.18
Agriculture 14628028 4218 1.00 3.03 0.07
Distance to river (m) <5 2053148 5.92 12.00 36.36 6.14
10 2023903 5.84 3.00 9.09 1.56
15 1993321 5.75 2.00 6.06 1.05
20 1929325 5.56 0.00 0.00 0.00
25 1874821 541 2.00 6.06 1.12
<250 24808726 71.53 14.00 42.42 0.59
Distance to road (m) <5 2697373 7.75 8.00 2424 313
10 2513975 722 3.00 9.09 1.26
15 2103836 6.04 5.00 15.15 2.51
20 1631991 469 5.00 15.15 3.23
25 1513212 435 1.00 3.03 0.70
> 250 24344541 69.95 11.00 33.33 0.48
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Figure 3: Thematic maps for landslide causative factors implicated in the study area. (a) Slope (°) showing steep gradients concentrated along the dam flanks
and rivers, (b) Aspect showing distinct in slope orientation, (c) Profile curvature predominantly in flat surface, (d) Plan curvature also reflecting mostly flat, ()
Elevation (meter) with higher altitude located in the southern and corner area, (f) Rainfall (millimeter/year) decreasing gradually away from the dam, (g) NDVI
indicating dense vegetation across much of the area, (h) Land use dominated by agricultural land, (i) Distance to river (meter) concentrated near the center
of study area and (j) Distance to road (meter) showing roads primarily located near the dam.
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occupied comparatively limited area.
3.2, Landslide susceptibility map and validation

The study classified the generated LSM into five
classes, such as very low, low, moderate, high, and very high
using natural breaks as illustrated in Figure 4 (a). Nearly 48%
of the study area was identified as belonging to the very low
landslide susceptibility (Figure 4b), predominantly covering
regions characterized by forest and agricultural land use. This
is further supported by the 0.50-0.60 NDVI class, which
represents dense vegetation, where no correlation with
landslide occurrence was identified, indicating the stabilizing
effect of well-vegetated areas. Dense vegetation can serve as
a natural buffer, reducing the direct impact of rainfall on slopes
and thereby mitigating the potential for landslide initiation
(Huangfu et al., 2024). Areas of low (34%) and moderate
susceptibility (12%) are found mostly in the upper part of the

study area, where the elevation is usually low, from 22 to 26
meters, and lower slope angles (below 21°). The land use for
these areas is shrubland, water, and some built-up areas such
as roads. The high (5%) and very high (1%) susceptibility are
located near the spillway, reservoir bank, river, main canal,
embankment dam, as well as in proximity to buildings, bridges,
and roads. A similar pattern has been observed at the Karun-
3 Dam, where elevated susceptibility occurs along the
riverbanks, lakeshores, dam structures, and adjacent road
networks (Zandi and Far, 2025).

In this study, the highest susceptibility (high and very
high) occurs between 48° to 87° slope angles, built-up land
use, concave profile and plan curvature area, proximity to the
river (< 5 meters), and to a lesser extent, areas located within
20 meters of a road. Oliveira et al. (2024) reported that slopes
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exceeding 45° in hilly terrain are highly susceptible to
landslide initiation, particularly combined with weak or
weathered lithologies. In Peninsular Malaysia, 27% of 37
documented landslide cases were triggered in sedimentary
rock formations such as limestone and shale (Maturidi et al.,
2021). Steep gradients in the present study could exert greater
force on unconsolidated alluvial underlain by weathered schist
and limestone that promote downslope transport of loose
materials, resulting in the accumulation of mixed rock and soil
deposits. This explains the frequent occurrences of such
deposits near the sump area. Furthermore, the influence of
concave curvature may also facilitate additional material
accumulation. Slope stability is critically influenced by
curvature, as the accumulation of water and loose materials is
promoted by concave structures, increasing pressure of pore
water and reducing shear strength, thereby making slopes
more susceptible to failure (Moragues et al., 2024). Similarly,
in other studies, very highly susceptible zones are commonly
associated with slopes exceeding 30° (Moragues et al., 2024;
Ngo et al., 2021; Hakim et al., 2022; Asmare, 2023; Sonker
and Tripathi, 2022), urban areas where land disturbance is
pronounced (Thein et al., 2023; Ngo et al., 2021), concave
curvatures (Selamat et al., 2022; Dam et al., 2022), as well as
distance within 300 meter of road and river (Sonker and
Tripathi, 2022; Asmare, 2023).

The PR value was calculated to describe the relative
weight or influence of each causative factor on the landslide
occurrence based on FR values (Moragues et al., 2024).
Analysis of the PR values for each weighted factor
demonstrates that slope (4.017), land use (3.572), profile
curvature (3.246), distance to river (3.021), and plan curvature
(3.014) have the highest weight as shown in Figure 5. These
findings imply that topographic form and environmental factors
exert stronger spatial control on slope instability and have
dominantly shaped the LSM model, as evidenced by their
cumulative FR values in the study. Notably, slope consistently
ranks as the most significant factor in LSM (Shano et al., 2021;
Moragues et al., 2024; Boukhres et al., 2023). Land use also
plays a critical role in slope stabilization through the reinforcing
effects of root systems (Ngo et al., 2021). Surface cover and
vegetation density are determined by the type of land use,
which in turn modifies surface hydrology and soil properties,
thereby affecting the likelihood of landslides (Xiao et al.,
2025). Slopes that remain unaffected by landslides are
primarily at higher elevations (above 25 meters) within the
northeast and southwest oriented valley corners, where dense
forest cover dominates. The presence of a dense vegetation
canopy serves as natural protective barrier from the direct
impact of rainfall on the surface of the soil. This relationship is
evident by moderate PR values of 2.550 for NDVI and 2.012

for elevation, which suggest that vegetation cover and
elevation provide stabilizing effects against landslide
occurrence in the study area. In addition, profile and plan
curvatures also influence slope response to instability.
Concave profile curvatures enhance water concentration
along the slope, while concave plan curvature facilitates
sediment accumulation with deposits commonly observed
along the valley bottoms where landslides frequently initiate
(Linetal., 2021; Selamat et al., 2022; Moragues et al., 2024).

In other high-altitude studies, such as Choke
Mountain (Asmare, 2023), Sikkim Himalaya (Sonker and
Tripathi, 2022), Three Gorges Reservoir (Zhou et al., 2025),
and Karaj Dam (Asadi Nalivan et al., 2024), the main landslide
predisposing factors are distance to rivers, distance to road,
and slope. Here, the river occupies the central valley bottom,
where high and very high susceptibility zones are
concentrated. Occasional seepage along the riverbanks near
the downstream area may have increased soil saturation
levels due to elevated moisture content. Fluctuation of water
levels and increased flow velocities, especially during intense
rainfall, may reduce shear strength in soils, promoting slope
failure. In Malaysia, rainfall was often identified as the most
triggering factor, such as in Langat River Basin (Selamat et
al., 2022), Muda River Basin (Abubakar et al., 2025), and
Penang Island (Yusof et al., 2024), as well as in a similar
tropical climate, such as Konto Watershed, Indonesia
(Sholichin et al., 2024). Interestingly, rainfall (PR value =
1.587) does not appear to play a major role in triggering
landslides in this context, possibly due to nearly uniform
precipitation distribution in the study area. Moreover, in
detailed or small-scale susceptibility studies (e.g. map scale
finer than 1:500), the variation of rainfall thresholds is often
minimal, reducing the relative influence compared to
geomorphological and geological factors (Maturidi et al.,
2021). Meanwhile, the lowest PR weights were observed for
distance to road and aspect with 1.256 and 1.00, respectively,
indicating minor significance on the number of landslides
occurrences. This may be attributed to the absence of active
constructions nearby that could alter natural geology,
drainage patterns, or impose additional loads affecting soil
stability (Moragues et al., 2024). Moreover, the roads in the
study area are generally service roads, small and located at a
considerable distance from the slopes. Aspect exhibited a low
influence, likely because the slope orientations in this study do
not significantly vary in solar radiation, moisture retention, and
vegetation density that could affect the instability of the slope
(Saranaathan et al., 2021).
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The accuracy of the LSM model was assessed using
the AUC derived from the ROC curve. The curve measures
the capability of the model to accurately distinguish between
true positives and negatives cases within the testing dataset.
The predictive performance of the model is reflected by the
AUC value, which ranges from 0 to 1, with higher accuracy
indicated by values closer to 1. Specifically, an AUC of 1.0
represents a perfect model, 0.90-0.99 denotes excellent
performance, 0.8-0.89 indicates good model, 7-0.79 suggests
fair performance, 0.51-0.69 implies poor performance, while
values of 0.5 or below indicates no predictive ability (Boukhres
et al.,, 2023; Das and Lepcha, 2019; Shano et al., 2021;
Moragues et al., 2024).
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Figure 5: The PR value indicating the weight of the individual factor in the
LSM model, showing the slope as the dominant predictor, with land use,
profile curvature, distance to river, and plan curvature also contributing
notably.

Q

f" A

St %

QL - o

< -

2 - ©

© ]

> o
=

G <

8 AUC=0.85 s
~

o (o]

E = e = Random guess o

1 1 1 1 O

o

0.2 0.4 0.6 0.8 1

False Positive Rate

Figure 6: FRM model evaluation performance from the ROC curve showing
an estimated model accuracy of about 85%.

The successive rate of FRM in this study was 0.85
(Figure 6), which is considered a good test and shows a high
predictive landslide occurrence as reported by Mallick et al.

(2021). Other landslide susceptibility studies (Ngo et al., 2020;
Sonker and Tripathi, 2022; Asmare, 2023) reported
comparable results, whereas slightly lower performance was
reported by Moragues et al. (2024) and Hakim et al. (2021).

4, CONCLUSION

The susceptibility map in this study is the result of a
combination relationship between ten selected causative
factors: aspect, slope, elevation, profile, and plan curvature,
rainfall, NDVI, land use, distance to river and road using the
frequency ratio model. The UAV based data acquisition
contributed significantly to the successful extraction of
parameters for the landslide susceptibility map. The study
shows that landslide susceptibility is dominated by very low to
moderate landslide susceptibility. Only approximately 6% of
the area was identified as part of high to very high
susceptibility categories, indicating limited zones with
significant landslide risk. These susceptible areas are
primarily situated in built-up areas, on steeper slopes (48 —
87°), concave profile and plan curvature, and a distance less
than 5 meters to the river. The strongest predictors in the study
area, according to the predictive values are slope, land use,
profile and plan curvatures, and distance to river. The
performance of the landslide susceptibility map is considered
a good test with an accuracy of 0.85. The derived results of
this study may serve as an important reference for local
authorities in decision making process and for researchers
interested in identifying influential factors in similar study
areas within Malaysia.
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